
Introduction toIntroduction to algorithmicsalgorithmics

Prof.Prof. Lidia JackowskaLidia Jackowska--StrumiłłoStrumiłło
DrDr Anna FabijańskaAnna Fabijańska

 InstituteInstituteInstituteInstituteInstituteInstituteInstituteInstitute of Applied of Applied of Applied of Applied of Applied of Applied of Applied of Applied ComputerComputerComputerComputerComputerComputerComputerComputer Science Science Science Science Science Science Science Science

Lodz University of Technology
Faculty of Electrical, Electronic,

Computer and Control

Engineering

Programming steps

define

problem

make or buy

software

design

program

code

program

debug

program

document

program

Top-down program design

time and billing

process

obtain input obtain output

obtain

daily logs

compute hours

for billing

print time and

billing report

print client

billing

compute

time on

Client A jobs

compute

time on

Client X jobs

Client A

bills

Client X

bills... ...

See pseudokode

Example of pseudocode

Compute time for Client A

• Set total regular hours and total overtime hours to zero.

• Get time in and time out for a job.

• If worked past 17:00 hours, then compute overtime

hours.

• Compute regular hours.

• Add regular hours to total regular hours.

• Add overtime hours to total overtime hours.

• If there are more jobs for that client, go back and

compute for that job as well.

Start

Set total regular hours =0

Set total overtime hours =0

Get job record

for client

Work

past 17:00

? Compute

overtime hours

Compute

regular hours

Add regular hours

to total regular hours

Add overtime hours

to total overtime hours

More

jobs for client

?

Stop

Print results

for client

Flowchart symbols

processing

input/output

decision

terminal

connector

yesno

Code the Program

Begin
total_regular := 0;
total_overtime := 0;
while not eof(input_file) do

begin
readln(input_file, hours_in, minute_in, hours_out, minute_out);
if(hours_out>=17) then

overtime := (hours_out - 17) + (minute_out/60)
else

overtime := 0;
regular := (hours_out - hours_in) + (minute_out - minute_in)/60

-overtime;
total_regular := total_regular + regular;
total_overtime := total_overtime + overtime;
end;

End.

Pascal

Program compute_time;

var input_file : text; {text file variable declaration}

total_regular, total_overtime, regular, overtime : real;

hours_in, minute_in, hours_out, minute_out : integer;

Begin {main program}

assign (input_file,'time.txt'); {assign the file variable with the file on disc}

reset (input_file); {open the file for reading}

total_regular := 0; total_overtime := 0;

while not eof(input_file) do

begin

readln(input_file, hours_in, minute_in, hours_out, minute_out);{reading}

if(hours_out>=17) then overtime:=(hours_out - 17)+(minute_out/60)

else overtime:= 0;

regular:=(hours_out-hours_in)+(minute_out-minute_in)/60-overtime;

total_regular:=total_regular+regular;

total_overtime:= total_overtime+overtime;

end;

close(input_file); {close the file}

writeln('regular = ', total_regular); {printing out the results}

writeln('overtime = ', total_overtime);

End. {Dot – the end of the program}

Pascal

#include <stdio.h> //plik compute_time.c

int main(){

FILE *f; // declaration of the FILE object

char znak;

int hours_in, minute_in, hours_out, minute_out;

float total_regular, total_overtime, regular, overtime;

f= fopen("time.txt","r"); // open the file for reading and assign it with f

if(f!=NULL) { // if the file exists

total_regular = 0; total_overtime = 0;

while(znak!=EOF) {

fscanf(f,"%d %d %d %d", &hours_in, &minute_in, &hours_out, &minute_out); //rf

if(hours_out>=17) overtime = (hours_out - 17) + (minute_out/60.0);

else overtime = 0;

regular = (hours_out - hours_in) + (minute_out - minute_in)/60.0 - overtime;

total_regular = total_regular + regular;

total_overtime = total_overtime + overtime;

znak=fgetc(f);

}

fclose(f); // close the file

printf("regular = %f, overtime = %f\n", total_regular, total_overtime);

}

else printf("File reading error\n");

return 0;

}

C

Imports System.IO 'including IO library

Module compute_time

Sub Main() 'main program

Dim hours_in, minute_in, hours_out, minute_out As Integer 'variables

Dim total_regular, total_overtime, regular, overtime As Single

Try 'exceptions

Dim sr As StreamReader = New StreamReader("time.txt")

'open the file and assign it with sr

total_regular = 0

total_overtime = 0

Do While sr.Peek() >= 0 'Do While loop

Dim tab(4) As String 'declaration of array tab (4 String elements)

tab = sr.ReadLine().Split(" ") 'reading data from the file into array

hours_in = Val(tab(0)) 'data conversion from string into integer

minute_in = Val(tab(1))

hours_out = Val(tab(2))

minute_out = Val(tab(3))

If (hours_out >= 17)

Then overtime = (hours_out - 17) + (minute_out / 60.0)

Else overtime = 0

End If

Visual

Basic

regular =(hours_out - hours_in)+(minute_out - minute_in)/60.0 -overtime

total_regular = total_regular + regular

total_overtime = total_overtime + overtime

Loop 'end of Do While loop

sr.Close() 'Close the file

'printing the results on the screen:

Console.WriteLine("regular = " & vbTab & "{0,3}", total_regular)

Console.WriteLine("overtime = " & vbTab & "{0,3}", total_overtime)

Catch e As Exception 'declaration e as an exception

Console.WriteLine(„File reading error: {0}", e.ToString()) 'exception

'handling

End Try

End Sub

End Module

Visual

Basic

Program debugging

�� Checking the program correctness.Checking the program correctness.

�� Finding and correcting the errors. Finding and correcting the errors.

�� Program testing using Program testing using bottombottom--up up

method for the method for the representative testing representative testing

data sets. data sets.

