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Top-down program design
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See pseudokode

Example of pseudocode

Compute time for Client A

• Set total regular hours and total overtime hours to zero.

• Get time in and time out for a job.

• If worked past 17:00 hours, then compute overtime 

hours.

• Compute regular hours.

• Add regular hours to total regular hours.

• Add overtime hours to total overtime hours.

• If there are more jobs for that client, go back and 

compute for that job as well.
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Code the Program

Begin
total_regular := 0;
total_overtime := 0;
while not eof(input_file) do

begin
readln(input_file, hours_in, minute_in, hours_out, minute_out);
if(hours_out>=17) then 

overtime := (hours_out - 17) + (minute_out/60)
else

overtime := 0;
regular := (hours_out - hours_in) + (minute_out - minute_in)/60

-overtime;
total_regular := total_regular + regular;
total_overtime := total_overtime + overtime;
end;

End.

Pascal



Program compute_time;

var input_file : text; {text file variable declaration}

total_regular, total_overtime, regular, overtime : real;

hours_in, minute_in, hours_out, minute_out     : integer;

Begin {main program}

assign (input_file,'time.txt'); {assign the file variable with the file on disc}

reset (input_file); {open the file for reading}

total_regular := 0; total_overtime := 0;

while not eof(input_file) do

begin

readln(input_file, hours_in, minute_in, hours_out, minute_out);{reading}

if(hours_out>=17) then overtime:=(hours_out - 17)+(minute_out/60)

else overtime:= 0;

regular:=(hours_out-hours_in)+(minute_out-minute_in)/60-overtime;

total_regular:=total_regular+regular;

total_overtime:= total_overtime+overtime;

end;

close(input_file); {close the file}

writeln('regular = ', total_regular); {printing out the results}

writeln('overtime = ', total_overtime);

End. {Dot – the end of the program}

Pascal

#include <stdio.h> //plik compute_time.c

int main(){

FILE *f;  // declaration of the FILE object

char znak;

int hours_in, minute_in, hours_out, minute_out;

float total_regular, total_overtime, regular, overtime;

f= fopen("time.txt","r");  // open the file for reading and assign it with f

if(f!=NULL) { // if the file exists

total_regular = 0; total_overtime = 0;

while(znak!=EOF) {

fscanf(f,"%d %d %d %d", &hours_in, &minute_in, &hours_out, &minute_out); //rf

if(hours_out>=17) overtime = (hours_out - 17) + (minute_out/60.0);

else overtime = 0;

regular = (hours_out - hours_in) + (minute_out - minute_in)/60.0 - overtime;

total_regular = total_regular + regular;

total_overtime = total_overtime + overtime;

znak=fgetc(f);

}

fclose(f); // close the file

printf("regular = %f, overtime = %f\n", total_regular, total_overtime);

}

else printf("File reading error\n");

return 0;

}

C



Imports System.IO  'including IO library

Module compute_time

Sub Main()  'main program

Dim hours_in, minute_in, hours_out, minute_out As Integer  'variables

Dim total_regular, total_overtime, regular, overtime As Single

Try  'exceptions

Dim sr As StreamReader = New StreamReader("time.txt") 

'open the file and assign it with sr

total_regular = 0

total_overtime = 0

Do While sr.Peek() >= 0  'Do While loop

Dim tab(4) As String 'declaration of array tab (4 String elements)

tab = sr.ReadLine().Split(" ") 'reading data from the file into array

hours_in = Val(tab(0)) 'data conversion from string into integer

minute_in = Val(tab(1))

hours_out = Val(tab(2))

minute_out = Val(tab(3))

If (hours_out >= 17) 

Then overtime = (hours_out - 17) + (minute_out / 60.0)

Else overtime = 0

End If

Visual 

Basic

regular =(hours_out - hours_in)+(minute_out - minute_in)/60.0 -overtime 

total_regular = total_regular + regular

total_overtime = total_overtime + overtime

Loop  'end of Do While loop

sr.Close()  'Close the file

'printing the results on the screen:

Console.WriteLine("regular = " & vbTab & "{0,3}", total_regular)

Console.WriteLine("overtime = " & vbTab & "{0,3}", total_overtime)

Catch e As Exception 'declaration e as an exception 

Console.WriteLine(„File reading error: {0}", e.ToString()) 'exception 

'handling

End Try

End Sub

End Module

Visual 

Basic



Program debugging

�� Checking the program correctness.Checking the program correctness.

�� Finding and correcting the errors. Finding and correcting the errors. 

�� Program testing using Program testing using bottombottom--up up 

method for the method for the representative testing representative testing 

data sets. data sets. 


