
1

Introduction to Computer ScienceIntroduction to Computer Science

ProgrammingProgramming inin CC

 Dr inŜ. Lidia Jackowska - Strumiłło

Computer EngineeringComputer Engineering DepartmentDepartment

TECHNICAL UNIVERSITY OF LODZTECHNICAL UNIVERSITY OF LODZ

2

C language features

�C is a very effective programming tool.

� C is flexible, portable and commonly

used.

�C allows for efficient programming at the

low level and is a competitive tool to

assemblies. At the same time it is

portable and has the features of high

level programming language.

 Computer Engineering Department, TU Lodz

2

3

History

C language was defined at the begin of

seventies by two employs of AT&T Bell

Laboratories:

Brian Kernighan and Dennis Ritchie.

C was used to write a code of UNIX operating

system.

Important dates:

1978 – a book „C language” was published,

1989 – ANSI C standard,

1990 – ISO 9899:1990 C standard.

 Computer Engineering Department, TU Lodz

4

Basic symbols

C alphabet consists of:

• small and capital letters of Latin

alphabet and “_” (underline character),

• arabic numerals,

• special characters:

+ - * / = < > () [] { } . , : ; ‘ ‘ " " ^ ! # &

% | ~ ?

 Computer Engineering Department, TU Lodz

3

5

Compiling phases

C program consists of one or more source

code parts saved in files. Program compiling is

performed in a few phases.

In the first phase C preprocessor translates the

source code into a chain of lexical symbols.

Preprocessor interprets program lines which

begins with # character (preprocessor directives).

It handles directives for source file inclusion

(#include), macro definitions (#define), etc..

 Computer Engineering Department, TU Lodz

6

Lexical symbols

There are six types of lexical symbols:

� identifiers,

� keywords,

� constants,

� strings,

� operators,

� separators.

 Computer Engineering Department, TU Lodz

4

7

Identifiers

Identifiers are chains of alphanumeric characters

(letters and digits) and the first letter of the data name

must be ALPHABETIC (i.e. A to Z or a to z).

Lowercase and uppercase characters are

differentiated.

A number of identifier characters is not limited.

At least first 31 characters of internal identifier has

its meaning, but in some implementations their number

can be upper.

External identifiers are more limited, for example to

first six characters (lowercase and uppercase

characters are not differentiated) in some applications.

 Computer Engineering Department, TU Lodz

8

Keywords

whilevolatilevoidunsigneduniontypedefswitchstruct

staticsizeofsignedshortreturnregisterlongint

ifgotoforfloatexternenumelsedouble

dodefaultcontinueconstcharcasebreakauto

Keywords must be written in lower case

 Computer Engineering Department, TU Lodz

5

9

Constants

C supports a few types of constants:

� integer,

� character,

� float,

� enumerated.

All the constants have any type.

Types of data will be presented later on during the

lecture.

 Computer Engineering Department, TU Lodz

10

Integer constants

Integer constant, which is a chain of digits is
considered as:

� decimal, if it begins with a digit different from 0;

� octal, if it begins with a digit 0 – octal constants
do not contain digits 8, 9;

� hexadecimal, if it begins with a chain 0x or 0X –
hexadecimal digits are completed with letters
from a to f – for 0x, or from A to F - for 0X.

Integer constant may be completed by a suffix, e.g.
u or U – unsigned; l or L – long.

Type of integer constant depends on its form,
value and suffix.

 Computer Engineering Department, TU Lodz

6

11

Character constants

� Character constant is a chain of one or more

characters inside single quotes, e.g. ‘x’.

� The value of character constant consisting

only one character is its numerical value.

� The value of multi-character constant

depends on the implementation.

� to express characters, which do not belong to

character constant special sequences may be

used.

 Computer Engineering Department, TU Lodz

12

Special sequences

\n - New Line, NL (LF)

\t - Horizontal Tabulation, HT

\v - Vertical Tabulation, VT

\b - BackSpace, BS

\r – Carriage Return, CR

\f - new page, FF

\a – alarm, BEL

\\ - backslash, \

\? - question mark, ?

\’ - single quote, ‘

\” - two quotes, ”

\ooo – octal number, ooo

\xhh – hexadecimal number, hh

 Computer Engineering Department, TU Lodz

7

13

Floating point constants

Floating point constant consists of:

� integer part,

� decimal dot,

� fractional part,

� letter e or E;

� power exponent – it may be with a sign,

� optional suffix (f,F,l or L).

Some of this elements may be omitted.
Examples:

1.2e5f (float) 3.85 (double) 1e-2L (long double)

 Computer Engineering Department, TU Lodz

14

Enumerated constants

Identifiers declared as enumerated have int

type.

 Computer Engineering Department, TU Lodz

8

15

Character strings

� String is a chain of basic symbols and other

ASCII characters inside two quotes, e.g.

"abc".

� The same special sequences as in character

constants may be used in character strings.

� Neighbouring strings may be concatenated

during the program compiling.

� String constant is an array, which elements

are characters. The last element of array is

character ‘\0’, which do not belong to string.

 Computer Engineering Department, TU Lodz

16

Separators

�Separators are:

•comments – chains of characters within /*
and */ or after // until the end of line -
comments within /*… */ mustn't be inside
other comment, string or constant;

Comments are ignored by the compiler, but are helpful to

explain how the program works to the programmers.

•spaces,

•tabulators,

•end of line or page characters, etc.

Separators are called „white characters”.

 Computer Engineering Department, TU Lodz

9

17

First program – text.c

include <stdio.h> // include stdio library

/* The first program in C */

/**/

int main (void) // main program function-obligatory

{

printf("I’m Bond, James Bond!\n"); // printing

// the text "I'm Bond,…" on the screen

return 0;

}

 Computer Engineering Department, TU Lodz

18

C program compiling and running

Source program is compiled and linked.

Commands creating executable files:

� tcc tekst.c – Borland's Turbo C++ compiler
(creates executable file: tekst.exe),

� bcc tekst.c – Borland C++ compiler (tekst.exe),

� cl tekst.c – Microsoft C compiler (tekst.exe),

� cc tekst.c – Unix gcc compiler (a.out).

Nowadays integrated programming
environments containing compilers are most
popular (e.g. MS Visual C++, Borland C++Builder,
Dev-C, etc.)

 Computer Engineering Department, TU Lodz

10

19

Basic data types

There are four basic data types in C :

� char – a single byte storing one character,

� int – integer number, its size depends on

the system,

� float – floating point number of single

precision,

�double - floating point number of double

precision.

 Computer Engineering Department, TU Lodz

20

Variables

�Variable can change its value within the
declared type.

�Variables store values and information.

They allow programs to perform calculations

and store data for later retrieval.

� Variables store numbers, names, text

messages, etc

� All variables must be declared before the first

usage in program.

 Computer Engineering Department, TU Lodz

11

21

Variables definition and declaration in C

Definition and declaration

type name1, name2;

Definition, declaration and initialization:

type name = constant;

Examples:

int cars; // integer number

char letter; // character, e.g. ‘b’

float saldo; // bank saldo

double pi = 3.14; // floating point number of double precision

char title [20] = "Pan Tadeusz"; //string

 Computer Engineering Department, TU Lodz

22

Expressions

� Expression is a description of algorithm used for

determining a specified value.

� Expression is a combination of arguments

(function names, variables, sub expressions)

and operators, that is coded in the C language.

Examples:

a = b + c

printf("Hello")

myfunction ()

 Computer Engineering Department, TU Lodz

12

23

Instructions (statements)

� Instructions are language statements describing operations

on the data.

� There are two kinds of instructions in C:

� simple, which do not contain other instructions as their

components,

� structural, which might be extended to the structure of

multiple statements.

� Simple instruction (statement) is an expression

finished with semicolon.

 Computer Engineering Department, TU Lodz

24

Expressions and statements

Examples:

Expressions: Simple instructions:

a = b + 0.5*c a = b + 0.5*c; // assignment

printf("Hello") printf("Hello");

myfunction() myfunction(); //function call

 Computer Engineering Department, TU Lodz

13

25

Simple statements

�Assignment:

z = w;

�Function call :

function_name (list of arguments);

Statement symbol in algorithm flowchart:

S

 Computer Engineering Department, TU Lodz

26

Block of statements

{

statement_1

statement_ 2

…

statement_n

}

Block symbol in

algorithm flowchart:

Sn

S1

…

 Computer Engineering Department, TU Lodz

14

27

Structural instructions

�Conditional if and if-else statements:

if (expression) statement

if (expression) statement1 else statement2

Conditions in algorithm flowcharts:

E

S

Yes

No

Next program

statement

E

S 1

YesNo

S 2

Next program

statement

 Computer Engineering Department, TU Lodz

28

If statements

if (expression) statement1 [else statement2]

ExampleExamples:s:

if (s == 2) printf("Two solutions");

if (x > y) a = 1; else a = 0;

if (w == z)

{

a=z-32.5;

printf("Expression solution: %f\n", a);

}

 Computer Engineering Department, TU Lodz

15

29

Conditional structural statements:

if (x > 0) printf("Positive");

else if (x<0) printf("Negative");

else printf("Zero");

zero

x>0
YesNo

x<0

negative

YesNo
positive

Next program statement

 Computer Engineering Department, TU Lodz

30

For statement

initial expression

repeat the loop while the expression2 is true

execute after statement in each loop run

for (expression1; expression2; expression3) statement

 Computer Engineering Department, TU Lodz

16

31

For statement
for (expression1; expression2; expression3) statement

Loop in algorithm flowchart:

expression 1

execute the

statement

expression 3Yes

No
expression 2

 Computer Engineering Department, TU Lodz

32

Examples:

for (i=1; i<10; i++) printf(”i =%d”, i);

for (i=10; i>1; i--)

{

x=5+10*i;

printf(”i=%d, x=%d”, i, x);

}

 Computer Engineering Department, TU Lodz

17

33

Example 1

include <stdio.h>

/**/

int main (void)

{

int x;

for (x =1; x<100; x = x + 1)

{

printf("Number %d\n", x);

}

return 0;

}

 Computer Engineering Department, TU Lodz

34

printf – formatted output

printf is a function in standard input/output library
(stdio.h). Its first argument is always a control
string.

printf("control string", variables, expressions);

Control string consists of ordinary strings and
format strings, which begins with % character
and specify the data to be printed. It controls
what gets printed and is followed by a list of
values to be substituted for entries in the control
string.

 Computer Engineering Department, TU Lodz

18

35

Format strings

%i – integer number,

%d - integer decimal number,

%u – unsigned integer decimal number,

%o – unsigned octal integer number without the
leading zero,

%x, %X - unsigned hexadecimal integer number
without the leading 0x or 0X string,

%c – character,

%s – string (text),

%f – floating point number with a decimal dot,

%e - floating point number in exponential form,

 Computer Engineering Department, TU Lodz

36

Format strings

%g - real number in %f or %e format depending

on the number value,

%6d – decimal number with the widths of 6 fields

at least,

%5f – floating point number printed in 5 fields size,

%.2f – floating point number with 2 digits in

fractional part,

%6.2f – a real value in a field 8 spaces wide with

room to show 2 decimal places,

%% - character %.

 Computer Engineering Department, TU Lodz

19

37

Example 2

include <stdio.h>

/**/

int main (void)

{

int number = 6;

float e = 2.718282;

printf("Integer number equals %d, and a real %f\n",
number, e);

return 0;

}

/***/

 Computer Engineering Department, TU Lodz

38

Example 3

Problem:

Write a program printing a table of Fahrenheit and
corresponding Celsius temperatures in the range from 0 to
300 F degrees at every 10 F degrees. Convert the data using
the equation:

C = (5/9)(F-32)

Discussion:

Output data: table of Fahrenheit and corresponding Celsius
temperatures

Algorithm:

Generate Fahrenheit temperatures using for loop and
calculate corresponding Celsius temperatures. Print the
results in two columns.

 Computer Engineering Department, TU Lodz

20

39

Algorithm flowchart:

F = 0

C = (5/9)(F-32)

F = F + 10Yes

No
F ≤ 300

print C, F

START

STOP

 Computer Engineering Department, TU Lodz

40

Example 3, program

include <stdio.h>

/* Specification of Fahrenheit and corresponding

Celsius temperatures */

int main ()

{

int fahr;

for (fahr =0; fahr<=300; fahr = fahr + 10)

printf("%3d %6.1f\n", fahr, 5.0/9*(fahr-32));

return (0);

}

 Computer Engineering Department, TU Lodz

21

41

Example 4

Write a program that calculates an area of a

circle for any radius entered by the user.

Discussion:

Input data: radius

Output data: area

Algorithm:
2rP π=

P = π * r2

print P

START

STOP

read r

Algorithm flowchart

 Computer Engineering Department, TU Lodz

42

Program example 1Program example 1
/*File: circle_1.c Program calculates an area of a circle*/

#include <stdio.h>

#define PI 3.14159 /*declarations*/

int main() /* main program – executive part */

{

float r,a; /* radius, area */

printf("Enter radius: ");

scanf("%f", &r); /* read radius*/

a=PI*r*r; /* compute circle area */

printf(" An area of a circle for the radius r = %.4f equals
%.4f", r, a); /* write the result */

return 0;

}

 Computer Engineering Department, TU Lodz

22

43

Program clarityProgram clarity
#include <stdio.h>

#define PI 3.14159

int main()

{

float r,area;

scanf("%f", &r);

area=PI*r*r;

printf(" An area of a circle for the radius r = %.4f equals %.4f", r, area);

return 0;

}

#include <stdio.h> #define PI 3.14159

int main() { float r, area; scanf("%f", &r);

area=PI*r*r; printf(" An area of a circle for the radius r = %.4f equals %.4f",
r, area);return 0;}

 Computer Engineering Department, TU Lodz

44

Program example 2Program example 2

/*File circle_2.c Program calculates an area of a circle */

#include <stdio.h>

#include <math.h>

int main () /* main program */

{

float radius,area; /*variables declarations */

printf(" 'Program calculates an area of a circle \n");

printf ("Enter the radius value, r =");

scanf("%f",&radius); /*read radius*/

area=M_PI*pow(radius,2); /* compute circle area */

printf(" An area of a circle for the radius r = %.4f equals %.4f", radius,
area); /*write the result*/

return 0;

}

 Computer Engineering Department, TU Lodz

23

45

Input functions

Functions in stdio.h library:

getchar – gets one character from the keyboard,

gets(char_array) – gests a string of characters and

writes them into an array,

scanf("control string", &variable_1, …, &variable_n)

- gets text data from the keyboard, converts the data

accordingly to control string and write them in

memory under addresses specified in argument list.

Name of variable proceeded by & sign means its

address.

 Computer Engineering Department, TU Lodz

46

scanf – formatted input

� scanf function uses in control strings the same

format strings as printf function, which begins with

% sign, but not all format strings, which can be

used with printf, are available for scanf.

� Each argument on the variable list corresponds to

input data string. Input string is defined as a

character string till the nearest white character or

till the end of its defined field size.

 Computer Engineering Department, TU Lodz

24

47

Examples

include <stdio.h>

…

int c, intvar, day, month, year;

c = getchar (); /* Program waits until the user
writes a character on a keyboard and press
[Enter]. The character is assigned to c variable
and [Enter] is ignored*/

scanf("%d", &intvar); //reading an integer number

scanf("%u/%u/%u", &day, &month, &year);

/* reading the data in the following format:
dd/mm/yy */

 Computer Engineering Department, TU Lodz

48

scanf - format codes

d,i,u,o,x – decimal, integer, unsigned, octal,

hexadecimal number respectively, which is red

and written in integer format.

i – integer number - it may be decimal, octal

(proceeded by zero) or hexadecimal (with leading

0x or 0X);

f,e,g – real number, which is red and written in float

format; decimal dot or exponential form are

optional.

c, s – character or string respectively.

 Computer Engineering Department, TU Lodz

25

49

scanf - format codes modifiers

%*s – star proceeding the code – input data

matching this format code are ignored and not

written into memory;

%10s – integer number following % defines the

maximal length of reading field size;

Optional length modifiers: h, l i L - proceeding the

code modify a type of variable, e.g.:

%hd – short int; %ld – long int; %lf – double;

%Lf – long double.

 Computer Engineering Department, TU Lodz

50

Example 5

Discussion:

Algorithm of this program comes directly from mathematics.

Input data: the equation coefficients

Output data: the equation solutions and its number

Algorithm:

1. Read a,b,c.

2. Calculate delta

3. Solve the equation

02
=++ cbxax 0≠a

 Computer Engineering Department, TU Lodz

Problem:

Write the program for solving square equations:

for .

26

stop

read a, b, c

start

No
∆<0

Yes

ac4b 2
−=∆

Yes No real solutions∆=0

x1=x2=-b/(2a)

No

a2

b
2x

a2

b
1x

∆

∆

+−
=

−−
=

print x1, x2

a≠0 Yes

a is not correct

No

/*File equation2.c program solves square equations */

#include <stdio.h>

#include <conio.h>

#include <math.h>

int main() /*main program*/

{

float a,b,c,delta,x1,x2; /* coefficients, delta, solutions */

printf("Program solves square equations ");

printf("Enter the equation coefficients in the order a,b,c, and a must be different from 0:");

scanf("%f %f %f",&a,&b,&c);

if (a!=0)

{

delta=b*b - 4*a*c;

if (delta< 0) printf(" No real solutions ");

else if (delta == 0) printf ("x1=x2=%.4f", -b/(2*a));

else

{

x1= (-b - sqrt(delta))/(2*a);

x2= (-b + sqrt(delta))/(2*a);

printf("x1 = %.4f, x2=%.4f",x1,x2);

}

}

else printf(" Incorrect a value, repeat ones again\n");

getch();

return 0;

} /*end of the program*/

27

53

Example 6

 Computer Engineering Department, TU Lodz

Problem:

Write a program for calculating the mean value of n numbers.

Discussion:

Input data: quantity of the data - n, values of the numbers

Output data: mean value

Algorithm:

• Read n and check, if n>0 .

• If "yes", read n numbers in a loop, and compute mean value.

• If "no" write "No numbers for calculations".

mean=sum/n

No numbers

for calculation

stop

i = 0

sum=sum+xi

ni <

i = i +1

sum=0

read xi

n>0

Yes

No

read n

start

No
Yes

 Computer Engineering Department, TU Lodz

28

/*File mean_val.c Program for calculating of arithmetic mean value */

#include <stdio.h>

int main() // main program

{

int i, n; // loop index, number of data

float x, sum; // input data, sum

printf(" Program for calculating of mean value \n");

printf (" Enter the data number n = ");

scanf("%d", &n);

if(n>0) // if statement, logical expression

{ // begin of statement1

sum=0.0;

for(i=0; i<n; i++) // begin of for loop

{

printf("Enter number %d: ", i+1);

scanf("%f",&x);

sum=sum+x;

} // end of for loop

printf("Mean value equals: %8.3f", sum/n);

}

else printf("No numbers for calculation\n"); // statement2

return 0;

}

56

Example 7

Problem:

Write a program for calculating the BMI (Body Mass
Index):

BMI = m/h2

where: m – weight in kg, h – height in m.

Print the information, if someone's weight is proper
(20 ≤ BMI ≤ 25), over or too short.

Discussion:

Input data: weight - m, height – h,

Output data: BMI and the information, if the weight is
proper, over or too short.

 Computer Engineering Department, TU Lodz

29

57

BMI calculation

Algorithm:

1. Read weight m in kg and height h in m.

2. Calculate: BMI = m/h2

3. Print BMI

4. If BMI < 20 print: "Your weight is too short",

else if BMI ≤ 25 print: "Your weight is proper",

else: "You have overweight ".

 Computer Engineering Department, TU Lodz

58

include <stdio.h>

/*BMI calculation */

int main (void)

{

char name [20];

float m,h,bmi;

printf("Write your name: ");

scanf("%s", &name);

printf("Enter your weight in kg and height in meters:\t");

scanf("%f %f", &m, &h);

bmi = m/(h*h);

printf("\n\nHello %s! \n\nYour BMI is: %5.2f\n", name, bmi);

if (bmi<20) printf("\aYour weight is too short\n\n");

else if (bmi<=25) printf("Your weight is proper\n\n");

else printf("\aYou have overweight\n\n");

getchar();

return 0;

}

 Computer Engineering Department, TU Lodz

