© Katedra Informatyki Stosowanej, Politechnika t6dzka

Example 8 S
(=

Problem:

Write the program printing ASCII codes for letters and

digits.

Discussion:

Given: Latin letters and digits
Input data: no input
Output data: Latin letters and digits and their ASCII codes

Algorithm:
Print letters and their ASCII codes in the first loop and
digits and their ASCII codes in the second loop.

59

© Katedra Informatyki Stosowanej, Politechnika t6dzka

[*File ASCII_codes;
Program writes ASCII codes for letters and digits*/

#include <stdio.h>
#include <conio.h>

int main()

{

char ch;
printf("Program writes ASCII codes for letters and digits\n");
for(ch="a"; ch<="z"; ch++)

printf("ASCII code for the letter %c is %d\n", ch, ch);
for(ch='0"; ch<='9"; ch++)

printf("ASCII code for the digit %c is %d\n", ch, ch);

getch(); /l conio.h
return O;

© Computer Engineering Department, TU Lodz

Data conversion @

Functions in stdlib.h library:

atoi(char_array) — converts text into integer
number; if the string contains a decimal
place, the number will be truncated.

atof(char_array) - converts text into floating
point number of double type.

atol(char_array) — converts text into integer
. number of long int type.

If the string starts with an invalid number, the
functions return zero.

61

© Computer Engineering Department, TU Lodz

Examples @

include <stdio.h>
include <stdlib.h>

char text [20];
int intvar;
double floatvar;

gets(text);
intvart = atoi(text);
floatvart = atof(text);

62

© Computer Engineering Department, TU Lodz

Example 9

Problem:
Write a program calculating the sum of first n natural
numbers by using Abel equation:

s=n(n+1)/2,
where:
s — sum of numbers, n — the last number in a sequence.

| Discussion:

Input data: number n

Output data: sum of numbers
Algorithm:

s=n(n+1)/2 &

R 2R fals © Computer Engineering Department, TU Lodz

include <stdlib.h>
/* calculating the sum of first n natural numbers */
int main (void)
{
char text [20];
int n,s;
printf(" Enter the number n: ");
gets(text);
n = atoi(text);
if (n!=0)
{
s=n*(n+1)/2;
printf("The sum of first %d natural numbers equals: %d\n", n,s);
getchar();
} else printf(" Invalid data entered, try again\n");
return O;

© Computer Engineering Department, TU Lodz

Arithmetic expressions @

Order of operations executed in C is consistent
with the rules of mathematics (parenthesis, then
operator precedence and associativity).

The arithmetic operator precedence from the
highest to the lowest:

unary

multiplicative

— additive

The arithmetic operators have left-to-right

associativity, i.e. operators with the same
precedence are evaluated from left to right.

65

© Computer Engineering Department, TU Lodz

Arithmetic operators @

C | Pascal Operation

+ + addition

- - subtraction

/ / or div |division

multiplication

modulo reduction - returns the

(0]
7 mod remainder from integer division

66

© Computer Engineering Department, TU Lodz

do ... while statement @

do statement while (expression);

In do...while loop statement is executed, later
on a logical value of expression is checked. If
expression is true loop is executed once again.

Example:
int x =0;
do {
X=x+1;
printf("Number %d\n", x);
} while (x<100);

© Computer Engineering Department, TU Lodz

Example 10 S

Problem:
Write the program reading the numbers from the keyboard
and checking, if they are even or odd, until number zero will
be entered.

Discussion:
Input: integer numbers for checking
Output: comment - even or odd

N Algorithm:
1. Numbers should be read in a loop, until zero is entered.
2. For each number its parity is checked (% operator) and parity
check result is printed.

68

© Computer Engineering Department, TU Lodz

[*File parity.c (of integer numbers)*/

_| #include <stdio.h>
int main()
{
int n;
printf("Program reads numbers and checks their parity\n");
printf("until zero is entered\n");
do
{
printf("Enter number: ");
scanf("%d", &n);
if((n%2)==0)
printf("Number %d is even\n", n);

else printf("Number %d is odd\n", n);
} while (n!=0);
getchar();
return 0;

© Computer Engineering Department, TU Lodz

\

Example 11

)
v

\

I

Problem:

Write the program reading pairs of integer numbers @ & b and
checking, if a is divisible through b. Numbers divisibility
should be checked until the user wishes to continue.
Correctness of the entered data should be checked.

Discussion:

Use the atoi function.

Algorithm:

* Read the pairs of numbers @ & b in a loop, check, if a is

divisible through b and print the proper information on the
screen. In the end check the loop condition.

* If the user wishes to stop and press ,,n”” or ,,N” finish the
program, in other case continue the loop.

70

start © Computer Engineering Department

a is integer?

/a/is not divisible throughp/ a is divisible through b
I

Yes

Continue?

4 © Computer Engineering Department, TU Lodz

#include <stdio.h>
#include <stdlib.h>

int main() {
int a, b;
char z, tmp[10];
printf("Program checks divisibility a through b\n");
printf("Enter a pair of integer numbers \n");

do {
do {
printf("Enter a: ");
scanf("%s", &tmp);
}while(atoi(tmp)==0);
a = atoi(tmp);
do {
printf("Enter b: ");
scanf("%s", &tmp);
}while(atoi(tmp)==0);
b = atoi(tmp);
if((a%b)==0) printf(" Number a=%d is divisible through b=%d", a, b);
else printf(" Number a=%d is not divisible through b=%d", a, b);
printf("\nContinue? (n-finish)\n");
z=getchar();
Ywhile((z!="n")&&(z!="N"));

return 0;

}

72

© Computer Engineering Department, TU Lodz

Types of arithmetic expressions @

An expression type is determined by the types of its
arguments. If types of different size are involved, the
result will usually be of the larger size.

In case of assignment, expression type is determined by
the type of the assigned variable.

Examples:

int a,b;

double c,d;

b*c/d /I expression of double type

a = b*c/d /lexpression of int type, b*c/d value is rounded

73

© Computer Engineering Department, TU Lodz

Type conversion and casting @

Casting forces type conversion, using cast
operator ().

The cast is made by putting the bracketed
name of the required type just before the
expression:

(type_name) castet _expression

—— Examples:

5/7 /lexpression_result = 0 — integer division
(float)5 /7 /lexpression_result = 0.71428

5/7.0 /lexpression_result = 0.71428 0

© Computer Engineering Department, TU Lodz

Increment and decrement operator@

++ |increment by 1

- - |decrement by 1

Increment and decrement operators may be prefix
(before the variable: ++n) or postfix (after the variable:
n++). They are different. In both cases n value is
changed, but:
 ++n — increment n value before its use,
n++ - increment n value after its use.
Examples:
n=5; x =n++;//results: x=5, n=6 "
X = ++n; // results: x=6, n=6

© Computer Engineering Department, TU Lodz

Logical value of expression @

Each expression in C has its logical value:
zero value means ,false’,
non-zero value means ,true”.

Variable of any type may be used as logical
variable, e.g. integer variable.

Example:
int valid_data = 0; //logical value ,false”
if (valid_data == 0) printf("Invalid data entered.\n");

v

© Computer Engineering Department, TU Lodz

Comparison operators

i)

Relational operators:

> | greater than

< less than

>= |greater than or equal to

<= |less than or equal to

____ Equality operators:

== |equal to

I= | not equal to (different)

78

© Computer Engineering Department, TU Lodz

Logical operators

i)

Operator

Function

! negation (NOT)

&& conjunction (AND)

I disjunction (OR)

[Comparison and logical operators return value
1 (,true”) or 0 (,false”) only.

79

10

© Computer Engineering Department, TU Lodz

Assignment operators and expression@

Expression:
expression1 op= expression2
/* where:op € { +-*/%} *
is equivalent to the expression:
expression1 = expression1 op expression2

Examples:
[i+=2 or i=i+2
X*=y+1 or x=x*"(y+1)

xval % s [a+b] += 4
or xval % s [a+b] = xval % s [a+b] +4

© Computer Engineering Department, TU Lodz

Example 12

Find the smallest natural number n, which
fulfils the following inequality:

1 1 1
lfr=Tr =T r=28
2 n

where: € is any positive number.

83

11

include <stdio.h>
include <stdlib.h>

[* program finds the smallest natural number n, which
fulfils the following inequality: 1+1/2+1/3+...+1/n>e */

© Computer Engineering Department, TU Lodz

~ int main (void)

{

char t[10];

intn=1;

float e,s=0;

do{
printf("Enter positive number e: ");
gets(t); e = atof(t);

} while (e <= 0);
do {

— s += 1/(float)n; n++;

} while (s <= e);
printf("n= %d\n", n-1);
getchar();

return (0);

}

84

Precedence and Associativity of C operators @

Category Operator Associativity
Postfix Ong->.++-- Left toright ==
Unary +-1~++ - - (type) * & sizeof Right to left
Multiplicative 1 % Left to right
Additive + - Left to right
Shift << >> Left to right
Relational <<=>>= Left to right
Equality === Left to right
Bitwise AND & Left to right
Bitwise XOR 2 Left to right
Bitwise OR | Left to right
Logical AND && Lefttoright
Logical OR Il Left to right i
Conditional ?: Right to left
Assignment = +=-=%=[= Y%= >>=<<=&="=|= |Right to left o5
Comma , Left to right

12

