
1

59

Example 8

Problem:

Write the program printing ASCII codes for letters and

digits.

Discussion:

Given: Latin letters and digits

Input data: no input

Output data: Latin letters and digits and their ASCII codes

Algorithm:

Print letters and their ASCII codes in the first loop and

digits and their ASCII codes in the second loop.

 Katedra Informatyki Stosowanej, Politechnika Łódzka

60

/*File ASCII_codes;

Program writes ASCII codes for letters and digits*/

#include <stdio.h>

#include <conio.h>

int main()

{

char ch;

printf("Program writes ASCII codes for letters and digits\n");

for(ch='a'; ch<='z'; ch++)

printf("ASCII code for the letter %c is %d\n", ch, ch);

for(ch='0'; ch<='9'; ch++)

printf("'ASCII code for the digit %c is %d\n", ch, ch);

getch(); // conio.h

return 0;

}

 Katedra Informatyki Stosowanej, Politechnika Łódzka

2

61

Data conversion

Functions in stdlib.h library:

atoi(char_array) – converts text into integer
number; if the string contains a decimal
place, the number will be truncated.

atof(char_array) - converts text into floating
point number of double type.

atol(char_array) – converts text into integer
number of long int type.

If the string starts with an invalid number, the
functions return zero.

 Computer Engineering Department, TU Lodz

62

Examples

include <stdio.h>

include <stdlib.h>

…

char text [20];

int intvar;

double floatvar;

gets(text);

intvart = atoi(text);

floatvart = atof(text);

 Computer Engineering Department, TU Lodz

3

63

Example 9

 Computer Engineering Department, TU Lodz

Problem:

Write a program calculating the sum of first n natural

numbers by using Abel equation:

s = n (n+1) / 2,

where:

s – sum of numbers, n – the last number in a sequence.

Discussion:

Input data: number n

Output data: sum of numbers

Algorithm:

s = n (n+1) / 2

64

include <stdio.h>

include <stdlib.h>

/* calculating the sum of first n natural numbers */

int main (void)

{

char text [20];

int n,s;

printf(" Enter the number n: ");

gets(text);

n = atoi(text);

if (n!=0)

{

s = n * (n+1) /2;

printf("The sum of first %d natural numbers equals: %d\n", n,s);

getchar();

} else printf(" Invalid data entered, try again\n");

return 0;

}

 Computer Engineering Department, TU Lodz

4

65

Arithmetic expressions

� Order of operations executed in C is consistent
with the rules of mathematics (parenthesis, then
operator precedence and associativity).

� The arithmetic operator precedence from the
highest to the lowest:

� unary

� multiplicative

� additive

� The arithmetic operators have left-to-right
associativity, i.e. operators with the same
precedence are evaluated from left to right.

 Computer Engineering Department, TU Lodz

66

Arithmetic operators

modulo reduction - returns the

remainder from integer division
mod%

multiplication**

division/ or div/

subtraction--

addition++

OperationPascalC

 Computer Engineering Department, TU Lodz

5

67

do … while statement

do statement while (expression);

In do…while loop statement is executed, later

on a logical value of expression is checked. If

expression is true loop is executed once again.

Example:

int x =0;

do {

x=x+1;

printf("Number %d\n", x);

} while (x<100);

 Computer Engineering Department, TU Lodz

68

Example 10Example 10

Problem:

Write the program reading the numbers from the keyboard

and checking, if they are even or odd, until number zero will

be entered.

Discussion:

Input: integer numbers for checking

Output: comment - even or odd

Algorithm:

1. Numbers should be read in a loop, until zero is entered.

2. For each number its parity is checked (% operator) and parity

check result is printed.

 Computer Engineering Department, TU Lodz

6

69

/*File parity.c (of integer numbers)*/

#include <stdio.h>

int main()

{

int n;

printf("Program reads numbers and checks their parity\n");

printf("until zero is entered\n");

do

{

printf("Enter number: ");

scanf("%d", &n);

if((n%2)==0)

printf("Number %d is even\n", n);

else printf("Number %d is odd\n", n);

} while (n!=0);

getchar();

return 0;

}

 Computer Engineering Department, TU Lodz

70

ExampleExample 1111

Problem:

Write the program reading pairs of integer numbers a & b and

checking, if a is divisible through b. Numbers divisibility

should be checked until the user wishes to continue.

Correctness of the entered data should be checked.

Discussion:

Use the atoi function.

Algorithm:

• Read the pairs of numbers a & b in a loop, check, if a is

divisible through b and print the proper information on the

screen. In the end check the loop condition.

• If the user wishes to stop and press „n” or „N” finish the

program, in other case continue the loop.

 Computer Engineering Department, TU Lodz

7

a is integer?

b integer ∧ b≠0

a is divisible through b

Yes

a is not divisible through b

No

Continue?

read a

start

Yes

read b

stop
No

Yes

a % b == 0

Yes

No

No

 Computer Engineering Department

72

#include <stdio.h>

#include <stdlib.h>

int main() {

int a, b;

char z, tmp[10];

printf("Program checks divisibility a through b\n");

printf("Enter a pair of integer numbers \n");

do {

do {

printf("Enter a: ");

scanf("%s", &tmp);

}while(atoi(tmp)==0);

a = atoi(tmp);

do {

printf("Enter b: ");

scanf("%s", &tmp);

}while(atoi(tmp)==0);

b = atoi(tmp);

if((a%b)==0) printf(" Number a=%d is divisible through b=%d", a, b);

else printf(" Number a=%d is not divisible through b=%d", a, b);

printf("\nContinue? (n-finish)\n");

z=getchar();

}while((z!='n')&&(z!='N'));

return 0;

}

 Computer Engineering Department, TU Lodz

8

73

Types of arithmetic expressions

� An expression type is determined by the types of its

arguments. If types of different size are involved, the

result will usually be of the larger size.

� In case of assignment, expression type is determined by

the type of the assigned variable.

Examples:Examples:

int a,b;

double c,d;

b*c/d // expression of double type

a = b*c/d //expression of int type, b*c/d value is rounded

 Computer Engineering Department, TU Lodz

74

Type conversion and casting

� Casting forces type conversion, using cast

operator ().

� The cast is made by putting the bracketed

name of the required type just before the

expression:

(type_name) castet _expression

Examples:Examples:

5 / 7 //expression_result = 0 – integer division

(float)5 / 7 //expression_result = 0.71428

5 / 7.0 //expression_result = 0.71428

 Computer Engineering Department, TU Lodz

9

76

Increment and decrement operators

decrement by 1 - -

increment by 1++

Increment and decrement operators may be prefix

(before the variable: ++n) or postfix (after the variable:

n++). They are different. In both cases n value is

changed, but:

++n – increment n value before its use,

n++ - increment n value after its use.

Examples:

n=5; x = n++; // results: x=5, n=6

x = ++n; // results: x=6, n=6

 Computer Engineering Department, TU Lodz

77

Logical value of expression

Each expression in C has its logical value:

� zero value means „false”,

� non-zero value means „true”.

Variable of any type may be used as logical

variable, e.g. integer variable.

Example:

int valid_data = 0; //logical value „false”

if (valid_data == 0) printf("Invalid data entered.\n");

 Computer Engineering Department, TU Lodz

10

78

Comparison operators

Relational operators:

less than or equal to<=

greater than or equal to>=

less than<

greater than>

not equal to (different)!=

equal to==

Equality operators:

 Computer Engineering Department, TU Lodz

79

Logical operators

disjunction (OR)||

conjunction (AND)&&

negation (NOT)!

Function Operator

Comparison and logical operators return value

1 („true”) or 0 („false”) only.

 Computer Engineering Department, TU Lodz

11

81

Assignment operators and expressions

Expression:

expression1 op= expression2

/* where: */

is equivalent to the expression:

expression1 = expression1 op expression2

Examples:

i +=2 or i = i + 2

x *= y + 1 or x = x * (y + 1)

xval % s [a+b] += 4
or xval % s [a+b] = xval % s [a+b] + 4

 %} / * - {+∈op

 Computer Engineering Department, TU Lodz

83

Example 12

� Find the smallest natural number n, which

fulfils the following inequality:

,

where: ε is any positive number.

ε>++++
n

1

3

1

2

1
1 K

 Computer Engineering Department, TU Lodz

12

84

include <stdio.h>

include <stdlib.h>

/* program finds the smallest natural number n, which
fulfils the following inequality: 1+1/2+1/3+…+1/n>e */

int main (void)

{

char t[10];

int n = 1;

float e,s=0;

do {

printf("Enter positive number e: ");

gets(t); e = atof(t);

} while (e <= 0);

do {

s += 1/(float)n; n++;

} while (s <= e);

printf("n= %d\n", n-1);

getchar();

return (0);

}

 Computer Engineering Department, TU Lodz

85

Precedence and Associativity of C operators

Left to right,Comma

Right to left= += -= *= /= %= >>= <<= &= ^= |=Assignment

Right to left?:Conditional

Left to right||Logical OR

Left to right&&Logical AND

Left to right|Bitwise OR

Left to right^Bitwise XOR

Left to right&Bitwise AND

Left to right== !=Equality

Left to right< <= > >=Relational

Left to right<< >>Shift

Left to right+ -Additive

Left to right* / %Multiplicative

Right to left+ - ! ~ ++ - - (type) * & sizeofUnary

Left to right() [] -> . ++ - -Postfix

AssociativityOperatorCategory

