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1 Introduction

The aim of the laboratory is to familiarize the students with the basics of arti�cial intelligence.
Two main foci of the laboratory course are arti�cial neural networks and search algorithms.

2 Laboratory dates and task deadlines

The laboratory will take place in weeks 2 - 15 of the winter semester in alternating weeks per
group from 12:15 till 14:00 in room 311, Institute of Applied Computer Science, building A10.
Deadlines:

1. 2019-10-09

2. 2019-10-16 (single hour per group) → Data generator and visualizer

3. 2019-10-23 & 2019-10-30 → Perceptron training and decision boundary visualization

4. 2019-11-06 & 2019-11-20 → Di�erent activation functions for a single neuron

5. 2019-11-27 & 2019-12-04 → Data�ow in shallow neural networks and decision boundary
visualization

6. 2019-12-11 & 2019-12-18 → Shallow neural network training (backpropagation)

7. 2020-01-08 & 2020-01-15 → Planning using search algorithms

8. 2020-01-22 & 2020-01-29 → Search algorithms ctnd

The �nal grade will be the average of the grades from each of assignments, a delay in handing
in the task solution will decrease the grade for this task by 0.5.

3 Task descriptions

3.1 Data generator and visualizer

Prepare a GUI that enables generation and visualization of data samples from two classes.
Samples should be two-dimensional, so that they can be plotted in x-y space. Each class should
consist of one or more gaussian modes1 with their means and variances chosen randomly from
some given inteval (e.g. µx, µy ∈ [−1..1]).
The interface should allow for setting a desired number of modes per class and a desired number
of samples per mode, as well as visualization of the generated samples on a two-dimensional plot.
Class labels, which are either 0 or 1, should be indicated by colors.

1https://en.wikipedia.org/wiki/Normal_distribution

1

https://en.wikipedia.org/wiki/Normal_distribution


3.1.1 Grading

Generation of samples with single mode per class + visualization in GUI → 3
Addition of user provided number of samples per mode → 4
Addition of multiple modes → 5

3.2 Single neuron

Implement an arti�cial neuron. The neuron should take samples generated by a code from the
task 1 as its input and predict their class membership at its output. The neuron should be
trainable through the formula presented during the lecture:

∆ ~wj = ηεf ′(s) ~xj = η(d− y)f ′(~wT ~xj) ~xj (1)

where:

� xj is the j
th sample

� f ′(s) is the derivative of the activation function evaluated for the jth sample

� ~w are the weights associated with inputs

� η is the learning rate

� d is the expected (true) class label

� y is a class label predicted by the neuron

Implemented neuron should allow for di�erent activation functions for evaluation:

� Heaviside step function (perceptron)

H(s) =

{
0 s < 0

1 s ≥ 0

� sigmoid (logistic function)

y =
1

1 + eβs

� sin

� tanh

� sign

sgn(s) =


−1 s < 0

0 s = 0

1 s > 0

� ReLu

ReLu(s) =

{
s s > 0

0 s ≤ 0

� leaky ReLu

lReLu(s) =

{
s s > 0

0.01s s ≤ 0
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At least the Heaviside and logistic functions must be implemented. Training of the neuron should
support the heaviside (assume that the derivative is 1) and logistic function. Variable learning
rate may be implemented but is not required. The GUI should present the decision boundary
by setting two backround colors for two half-planes.

3.2.1 Grading

Evaluation and training of a neuron with Heaviside and logistic activation functions + decision
boundary visualization in GUI → 3
Addition of sin and tanh activation functions for evaluation and training OR introducing variable
learning rate → 4
Addition of sign, ReLu and leaky ReLu activation functions for evaluation → 5

3.3 Shallow neural network

Implement a shallow (up to 5 layers) fully connected neural network. The network should be
based on the neuron implemented in the task #2 and use the data generated by the task #1 as
its input and yield the predicted class membership at its output. According to theory, any data
classi�cation problem should be solvable using a three layered network, thus at the minimum
the implemented solution should support the evaluation and training of such a network. The
output should be presented in the form of two values describing the con�dence that the network
belongs to each class. The network should consist of a two-neuron input layer, two-neuron
output layer and at least one hidden layer, the remaining values of width and depth of the
network should be con�gurable. The neurons should use the logistic activation function, though
the implementation may be extended by adding more options. The network should be trained
using the backpropagation formula:

∆ ~wkj = ηδkf
′(sk)~xl = ηΣi(~d

i − ~yi)f ′(si)W i
kf

′(sk)~xl (2)

As was the case in task 2, the GUI should present the decision boundary for the network through
colouring the corresponding parts of the plot.

3.3.1 Grading

Evaluation and training (backpropagation) of 3 layered fully connected neural network + decision
boundary visualization in GUI → 3
Parametrizing number of layers / neurons per layer → 4
Addition of multiple activation functions OR training the samples in batches → 5

3.4 Search algorithms

Implement a program capable of �nding a solution to the the following logistic problem: �nd
the optimal route for the delivery of goods from a supplier to n recipients using a truck of some
�xed capacity. The cost is the total distance needed for delivering all requested goods.
Each recipient needs a speci�c volume of goods. Assume also, that goods cannot be taken from
the recipient nor can they be moved back to the supplier.
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The demand for goods is speci�ed using the following table:

Recipient name Volume of goods requested

A 5

B 3

C 7

There exists a direct route between the supplier and all recipients as well as between any two
recipient and mutual distances are shown in the table below (S denotes the supplier):

A B C S

A - 2 1 11

B 2 - 4 5

C 1 4 - 8

S 11 5 8 -

Assume that the truck can �t four items at a time and starts at the location of the supplier.

3.4.1 Grading

Working solution based on a blind search algorithm → 3
A solution that implements heuristic search → 4
Extension that enables parameter modi�cations (demand, supply, number of consumers) → 5

4 Implementation requirements

� Task solutions must be implemented in Python2 version 3

� Use of existing implementations (libraries, code samples available online, etc.) of solutions
to given problems is prohibited. Libraries may be used for ancillary code (plotting, matrix
calculations, GUI, etc.), for these tasks matplotlib3 and NumPy4 are suggested.

� All libraries used along with the exact version numbers must be speci�ed in requirements.txt5

� All libraries must be installable through pip6

� Solutions to tasks 1 -3 should be implemented as a single program with graphical user
interface

� Solution to task 4 may be implemented either in GUI or terminal-based form

2https://www.python.org/
3https://matplotlib.org/
4https://numpy.org
5https://pip.pypa.io/en/latest/user_guide/#requirements-files
6https://packaging.python.org/tutorials/installing-packages/#requirements-files
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