
Arti�cial Intelligence Fundamentals Laboratory

Piotr �uczak M.Sc.Eng.

piotr.luczak.1@p.lodz.pl

Winter 2021

1 Introduction

The aim of the laboratory is to familiarize the students with the basics of arti�cial intelligence.
Three main foci of the laboratory course are arti�cial neural networks, search algorithms and
fuzzy logic.

2 Laboratory dates and task deadlines

The laboratory will take place in weeks 1 - 15 of the winter semester from 08:15 till 10:00 (group
1) or from 10:15 till 12:00 (group 2) in room E107, Institute of Applied Computer Science,
building A12.
Deadlines:

1. Week 3 (2021-10-15) → Data generator and visualizer

2. Week 6 (2021-11-05) → Single neuron

3. Week 9 (2021-11-26) → Shallow neural network

4. Week 12 (2021-12-17) → Search algorithms

5. Week 15 (2022-01-28) → Fuzzy control

The �nal grade will be the average of the grades from each of the assignments; a delay in handing
in the task solution will decrease the grade for this task by 0.5. In order to pass the course, all
assignments must be handed in and awarded a positive grade.

3 Task descriptions

3.1 Data generator and visualizer

Prepare a GUI that enables the generation and visualization of data samples from two classes.
Samples should be two-dimensional, so that they can be plotted in x-y space. Each class should
consist of one or more gaussian modes1 with their means and variances chosen randomly from
some given interval (e.g. µx, µy ∈ [−1..1]).
The interface should allow for setting the desired number of modes per class and a desired number
of samples per mode, as well as visualization of the generated samples on a two-dimensional plot.
Class labels, which are either 0 or 1, should be indicated by colors.

1https://en.wikipedia.org/wiki/Normal_distribution

1

mailto:piotr.luczak.1@p.lodz.pl
https://en.wikipedia.org/wiki/Normal_distribution


3.1.1 Grading

Generation of samples with a single mode per class + visualization in GUI → 3
Addition of a user-provided number of samples per mode → 4
Addition of multiple modes → 5

3.2 Single neuron

Implement an arti�cial neuron. The neuron should take samples generated by a code from the
task 1 as its input and predict their class membership at its output. The neuron should be
trainable through the formula presented during the lecture:

∆ ~wj = ηεf ′(s) ~xj = η(d− y)f ′(~wT ~xj) ~xj (1)

where:

� xj is the j
th sample

� f ′(s) is the derivative of the activation function evaluated for the jth sample

� ~w are the weights associated with inputs

� η is the learning rate

� d is the expected (true) class label

� y is a class label predicted by the neuron

Implemented neuron should allow for di�erent activation functions for evaluation:

� Heaviside step function (perceptron)

H(s) =

{
0 s < 0

1 s ≥ 0

� sigmoid (logistic function)

y =
1

1 + eβs

� sin

� tanh

� sign

sgn(s) =


−1 s < 0

0 s = 0

1 s > 0

� ReLu

ReLu(s) =

{
s s > 0

0 s ≤ 0

� leaky ReLu

lReLu(s) =

{
s s > 0

0.01s s ≤ 0

2



At least the Heaviside and logistic functions must be implemented. Training of the neuron should
support the Heaviside (assume that the derivative is 1) and logistic function. Variable learning
rate may be implemented but is not required. The GUI should present the decision boundary
by setting two background colours for two half-planes.

3.2.1 Grading

Evaluation and training of a neuron with Heaviside and logistic activation functions + decision
boundary visualization in GUI → 3
Addition of sin and tanh activation functions for evaluation and training OR introducing variable
learning rate → 4
Addition of sign, ReLu and leaky ReLu activation functions for evaluation → 5

3.3 Shallow neural network

Implement a shallow (up to 5 layers) fully connected neural network. The network should be
based on the neuron implemented in the task #2 and use the data generated by the task #1 as
its input and yield the predicted class membership at its output. According to theory, any data
classi�cation problem should be solvable using a three-layered network, thus at the minimum
the implemented solution should support the evaluation and training of such a network. The
output should be presented in the form of two values describing the con�dence that the network
belongs to each class. The network should consist of a two-neuron input layer, a two-neuron
output layer, and at least one hidden layer, the remaining values of width and depth of the
network should be con�gurable. The neurons should use the logistic activation function, though
the implementation may be extended by adding more options. The network should be trained
using the backpropagation formula:

∆ ~wkj = ηδkf
′(sk)~xl = ηΣi(~d

i − ~yi)f ′(si)W i
kf

′(sk)~xl (2)

As was the case in task 2, the GUI should present the decision boundary for the network through
colouring the corresponding parts of the plot.

3.3.1 Grading

Evaluation and training (backpropagation) of 3 layered fully connected neural network + decision
boundary visualization in GUI → 3
Parametrizing number of layers / neurons per layer → 4
Addition of multiple activation functions OR training the samples in batches → 5

3.4 Search algorithms

Implement a simple route �nder for the game of snake. Simple implementation of Snake using
PyGame2 has been provided on GitHub3 The game has been modi�ed to include an additional
type of tiles that reduces the score and the length of the snake by 1 and as such should be avoided.
These tiles should be considered when implementing the cost function. Each time the algorithm
should generate a full path to the "fruit" block, which will then be executed in sequence. The
search algorithm should automatically stop when no path to the "fruit" can be found.

2https://www.pygame.org/
3https://github.com/PALuczak/ArtificialIntelligenceFundamentals/blob/master/Snake.py

3

https://www.pygame.org/
https://github.com/PALuczak/ArtificialIntelligenceFundamentals/blob/master/Snake.py


3.4.1 Grading

Working solution based on a blind search algorithm → 3
Solution that implements heuristic search → 4
Solution that implements A* algorithm → 5

3.5 Fuzzy control

Implement a fuzzy controller capable of controlling a paddle in a classic Pong game4 a suitable,
simpli�ed implementation has been provided on GitHub5. The controller should be implemented
using scikit-fuzzy6. The controller will have access to two values: the distances between the center
of the ball and the center of the paddle in X anf Y dimension. The aim is to de�ect the ball every
time and not let the Opponent score. In comparison with the classic version, this implementation
provides a di�erent way of increasing the speed of the re�ected ball. If the ball is de�ected using
the edgemost 25% of the paddle, its speed increases by 10%. As the speeds of the paddles are
limited, at some point the provided naive Opponent will not be able to keep up.

3.5.1 Grading

Basic ball-following ruleset with consequents de�ned using Mamdami's method → 3
Basic ball-following ruleset with consequents de�ned using TSK method → 4
More complex ruleset that attempts to re�ect the ball using edges of the paddle → 5

4 Implementation requirements

� Task solutions must be implemented in Python7 version 3

� Use of existing implementations (libraries, code samples available online, etc.) of solutions
to given problems is prohibited unless otherwise speci�ed. Libraries may be used for
ancillary code (plotting, matrix calculations, GUI, etc.), for these tasks matplotlib8 and
NumPy9 are suggested.

� All libraries used along with the exact version numbers must be speci�ed in requirements.txt10

of environment.yml11

� All libraries must be installable through pip12 or conda13

� Solutions to tasks 1 -3 should be implemented as a single program with graphical user
interface

� Solution to tasks 4 and 5 should be implemented using the provided scripts

4https://en.wikipedia.org/wiki/Pong
5https://github.com/PALuczak/ArtificialIntelligenceFundamentals/blob/master/Pong.py
6https://pythonhosted.org/scikit-fuzzy/
7https://www.python.org/
8https://matplotlib.org/
9https://numpy.org

10https://pip.pypa.io/en/latest/user_guide/#requirements-files
11https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#

create-env-file-manually
12https://packaging.python.org/tutorials/installing-packages/#requirements-files
13https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#

creating-an-environment-from-an-environment-yml-file

4

https://en.wikipedia.org/wiki/Pong
https://github.com/PALuczak/ArtificialIntelligenceFundamentals/blob/master/Pong.py
https://pythonhosted.org/scikit-fuzzy/
https://www.python.org/
https://matplotlib.org/
https://numpy.org
https://pip.pypa.io/en/latest/user_guide/#requirements-files
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#create-env-file-manually
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#create-env-file-manually
https://packaging.python.org/tutorials/installing-packages/#requirements-files
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-yml-file
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-yml-file

	Introduction
	Laboratory dates and task deadlines
	Task descriptions
	Data generator and visualizer
	Grading

	Single neuron
	Grading

	Shallow neural network
	Grading

	Search algorithms
	Grading

	Fuzzy control
	Grading


	Implementation requirements

