
1

INTRODUCTION TO INTRODUCTION TO 

ALGORITHMICALGORITHMICSS

Prof. Lidia Jackowska-Strumiłło

Dr Anna Fabijańska

 Institute of Applied Computer Science Institute of Applied Computer Science Institute of Applied Computer Science Institute of Applied Computer Science 

Lodz University of Technology

Faculty of Electrical, Electronic, Computer 

and Control Engineering

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
2

The proof of the algorithm correctness 

is a mathematical reasoning, which 

leads to the formal evidence that the 

particular algorithm having the proper 

input data will give the required result. 

Algorithm Correctness



2

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
3

• Verification of the algorithm correctness is 

based on its specification, which is 

independent from the program code 

implementing the algorithmic. 

• The specification states what the 

algorithm is supposed to do and 

determines the relation between its input 

and output data. 

Verification of the algorithm 
correctness

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
4

• The algorithm is considered partially 

correct if, assuming the precondition is 

true, than if the algorithm terminates, the 

postcondition is true. (The algorithm 

specification is fulfilled.)

• The algorithm is totally correct if it is 

partially correct and has the halting 

property. The algorithm possess the halting 

property if it stops for each set of the 

proper input data.

Total and partial correctness



3

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
5

Pre- and postcondition

The specification of the algorithm consists 
of two parts: 

• Precondition – condition for the input data which 
must be met at the beginning. If the input data does
not fulfill such a requirement, it is not guaranteed 
that the algorithm will work properly or even that it 
will stop.   

• Postcondition – it determines the dependence of 
the algorithm outcomes from the input data 
assuming that the algorithm will stop. It is the final 
condition for the algorithm which is always true 
while finished and if the precondition was fulfilled. 

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
6

Checking partial correctness 

• Proof that the algorithm specification is completed:

{P} S {Q},

where: P – precondition, S – action (statement),

Q – postcondition.

Verification of the algorithm 
correctness

{array of non-zero number of elements} bubble sort 

{array including the same elements well-ordered }



4

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
7

Checking partial correctness 

• In order to prove it, the specification (so as 
the algorithm) should be divided into 
multiple steps for which verification of the 
correctness is simple. 
For the i-th step the Hoare triple is: 

{Pi} Si {Qi}.

Verification of the algorithm 
correctness

x:=5

{x=6, y=100}x:=5{x=5,y=100}

x:=5

{true}x:=5{x=5}

x:=x+1

{x=15}x:=x+1{x=16}

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
8

Checking partial correctness

• Due to the Hoare’s logic, if for each i: 

Pi = Qi-1 and 

{Pi-1} Si-1 {Qi-1}  i  {Pi} Si {Qi}, 

so {Pi-1} Si-1; Si {Qi}.

• If for each i=1,2,…,n is completed: 

{Pi} Si {Qi}, 

the algorithm specification is completed:

{P} S {Q}.

Verification of the algorithm 
correctness



5

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
9

Algorithm description can be:

• simple statement (assignment),

• structural statement:
– block,

– switch statement,

– loop, etc.

• subroutine (function),

• the whole program.

Partial correctness

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
10

Examples – assignment statement:

• for instruction x:=4: 

{true} x:=4 {x=4},

means that for any input data before the 
instruction, the value of variable x equals 4 
after its execution.

• the following formulaes will also be true:

{x=6, y=100} x:=5 {x=5, y=100}

and

{x=10} x:=x+2 {x=12}.

Partial correctness



6

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
11

Structural instructions and functions

• In order to indicate the truth of the switch 
statement specification, it is required to prove that 
the postcondition results from the precondition 
and from the test condition in each cases of the 
switch statement is true.   

• Functions have also its pre- and postconditions; 
it must be checked if the precondition of the 
function results from the initial calling step and 
the postcondition results in the final calling step.

• Indication of programming correctness for the 
loop requires loop invariant. 

Partial correctness

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
12

Loop invariantLoop invariant

• Loop invariant is a logical expression 

which value does not change during the 

loop execution. 

• It determines conditions which must be 

fulfilled by the variables in the loop and 

also by the input and output data. 

• These conditions must be true before 

execution of the first loop and after each 

loop run. 



7

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
13

while(w)

{

… 

instruction 1;

instruction 2;

…

}

p – loop invariant  w – loop condition 

sentence p:

• is true when the content of the loop 
is performed, 

• is true after each iteration of the 
loop, 

• is true after termination of the loop.

sentence w:

• is true when the loop is performed, 

• is false after the termination of the 
loop.

Loop invariantLoop invariant

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
14

Mathematical induction is used to proof 

that a sentence is loop invariant. 

It states that:

1. if a sentence is true for n=0, 

2. if it is true for any number n ≥ 0 then this 

implies, that it must be also true for the 

number n+1, 

3. from (1) and (2) it implies, that the sentence 

is true for all non-negative integer numbers.

Loop invariantLoop invariant



8

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
15

int a=5, b=0; 

for (int i=0; i<9; i++) 

{ 

b++; 

}

loop invariant:  a =5

Loop invariantLoop invariant

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
16

Algorithm Correctness

The partial correctness of the algorithm can be 

proved by:

• selection of control points, 

• linking each point with the assertion (logical 

function representing assumption), 

• determining of the invariants for iterations.

The total correctness of the algorithm can be 

additionally proved by:

• determining of the convergent (the value 

dependent on variable data, which is convergent)

- this guarantees algorithm termination. 



9

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
17

Inference rules for partial correctness

1. Chose an invariant: x*n! = N!

2. Proof that it is an invariant :

x*n! = N! & n > 0 =>?=> (x*n)*(n-1)! = N!

3. Proof that initialisation guarantees invariant
completion:

true =>?=> 1*N! = N!

4. Proof that invariant guarantees that postcondition 
is true:

x*n! = N! & ¬n > 0 =>?=> x = N!

{true}
x := 1; n := N;
WHILE n > 0 DO {x*n! = N!}
BEGIN
x := x*n; n := n-1
END
{x = N!}

 Computer Engineering Department, TU Lodz

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
18

Inference rules for partial correctness

loop

consistency

consistency

composition 

composition 

composition 



10

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
19

Inference rules for partial correctness

Hoare’s logic for partial correctness is:

• correct – works out only the true facts and, 

• complete – each true statement which is partially 
correct can be conducted.

Non-automatic steps in the proof of partial correctness:

• to guess the loop invariant,

• to proof non-informatic facts required in the 
consistency rule.

It is possible (with some difficulties) to generalise the 
Hoare’s logic into more complex programming 
languages. 

To proof partial correctness is time consuming as for 
daily programming practice. 

Hoare’s logic has influenced the progress of 
programming languages and methods. 

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
20

int power1(int x, int n)

{

int z,m,y;

z=x; y=1; m=n;

while (m!=0)

{

if (m%2==1) y=y*z;

m=m/2;

z=z*z;

}

return y;

}
binary power 

Invariant:  zm
* y = xn

n – natural number,                             
x- real number

zm * y = xn

z2* m/2 * (y * z) = xn and  m % 2=1               

or z2* m/2 * y=xn and  m % 2 = 0

(z*z)m/2 * y = xn

(z*z)m * y = xn After exiting the loop: 

zm
* y = xn  ,   m=0 so    

y = xn 

zm * y = xn

Loop invariantLoop invariant



11

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
21

int NWD(int a, int b) 

{ 

int c; 

while (b!=0) 

{ 

c = a%b; 

a = b; 

b = c;

}

return a; 

}
Euklide’s  algorithm 

Invariant:  

NWD(a,b)=NWD(b,a mod b)

NWD(a,b)=NWD(b,a mod b)

After exiting the loop: 

NWD(a,b)=NWD(b,a mod b),   
b=0

NWD(a,b)=NWD(b,a mod b)

Loop invariantLoop invariant

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
22

Loop classification:

� loop with a guard: reads and 
process data as long as prohibited 
element occurs

� loop with a counter: it is known in 
advance how many times the loop 
will be executed

�general loops: all others 

Simple loops have usually simple invariants

Loop invariantLoop invariant



12

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
23

Halting condition determines when 
the particular program is supposed to

terminate.

Program termination is equivalent to: 
• correct execution of all the 

instructions;
• termination of all the loops; 
• termination of all the recurrent 

functions.

Halting conditionHalting condition

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
24

Program correctness

While checking the program correctness 
apart from the algorithm correctness it is 
important also to take under consideration: 

• possibility of overflow of integer types 
range, 

• possibility of overflow or underflow for 
floating point numbers,

• possibility of exceeding the size of arrays, 
• correctness of opening and closing files, 
• and others. 



13

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
25

Algorithm complexityAlgorithm complexity

Computational complexity is a measure used 
for comparing algorithms' efficiency. 

It determines the amounts of computer 
resources necessary for performing the 
algorithm. 

Basic resources requirements: 

� execution time (time complexity);

� the required memory (space complexity).  

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
26

The algorithm's computational 
complexity is a function of data 
dimension n.

Units of computational complexity: 

� the performance of one dominant 
action for time complexity;  

� word of machine memory for space 
complexity.

Algorithm complexityAlgorithm complexity



14

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
27

AsymptoticAsymptotic complexity complexity ––
approximated measure of approximated measure of 

effectiveness effectiveness 

Function:  f(n) = n2 + 100•n + log10 n + 1000

n – number of calculations 

n f(n) n2 100•n log10 n 1000

1

10

100

103

104

105

1 101

2 101

21 002

1 101 003

0.1%

4.8%

48%

91%

99%

99.9%

9%

48%

48%

9%

1%

0.1%

0.0%

0.05%

0.001%

0.0003%

0.0%

0.0%

91%

48%

4.8%

0.09%

0.001%

0.0000%

For large n, function grows as n2, 
other elements can be neglected.

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
28

Suppose f and g are two functions defined on some 
subset of the real numbers.

Function f is of order no higher than g, 

if the constants n0>0 and c>0 exist and the 
conditions are fullfiled:

)()(,0 ngcnfnn ⋅≤≥∀

Notation:

))(()( ngOnf =

„Big O” notation„Big O” notation



15

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
29

Example:

f(n) = n2 + 100*n + log10 n + 
1000

can be roughly described as:

f(n) ~ n2 + 100*n + O(log10 n)

or

f(n) ~ O(n2)

„„BigBig O” notationO” notation

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
30

The notations are similarly defined:

•„small o” (f is of the lower level than g),

•„big Ω„(f is at least g level), 

• „small ω” (f is of the higher level than g),

•„big Θ” (f is of the precise g level)

Other notationsOther notations

))(()()()(,0 ngnfngcnfnn Ω=⇒⋅≥≥∀

))(()()()(,0 ngonfngcnfnn =⇒⋅<≥∀

))(()()()(,0 ngnfngcnfnn Θ=⇒⋅=≥∀

))(()()()(,0 ngnfngcnfnn ω=⇒⋅>≥∀



16

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
31

Complexity classesComplexity classes

computational complexity :

• 1 – fixed 

• log2n - logarithmical

• n - linear

• n log2n linearly-logarithmical                  
(or quasi-linear)

• n2 - power

• nc – multinominal

• cn - exponential

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
32

Complexity classesComplexity classes

f(n)

n



17

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
33

Algorithmic classes and their time of 
calculation on the computer with the speed 

of 1 and instruction µs

Complexity classesComplexity classes

class complexity
number of calculations and 

the time of completion 

n 10 103

fixed

logarithmic

al

linear

power

exponential

O(1)

O(log n)

O(n)

O(n2)

O(2n)

1

3.32

10

102

1024

1µs

3µs

10µs

100µs

10ms

1

9.97

103

106

10301

1 µs

10 µs

1ms

1s

>>1016 years

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
34

One of the most important function in assessing 

the effectiveness of algorithms is logarithmic 

function. 

If is possible to prove that the algorithm 

complexity is logarithmical one, such algorithm 

can be considered as very efficient. There are 

better functions in such a sense than the 

logarithmical, however not many of them, as for 

example O(log2 log2n) or O(1) have 

a practical meaning.

Complexity classesComplexity classes



18

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
35

Calculating complexity classes of power 
algorithms with natural index:

Name of the power 
algorithm

Complexity class

„naive” O(n)

binary O(log2 n)

Complexity classesComplexity classes

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
36

Algorithm complexityAlgorithm complexity

Complexity types:

� expected complexity;

� optimistic complexity;

� pessimistic complexity.

Algorithm time complexity 

is a function of input data size. 

It also depends on other parameters, eg.

input data type and their order. 



19

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
37

Computational complexity classes of 
selected sorting algorithms:

Name of the 

sorting 

algorithm

Complexity class

optimistic typical pessimistic

bubble O(n) O(n2) O(n2)

through selection O(n2) O(n2) O(n2)

through insertion O(n) O(n2) O(n2)

quicksort O(n log n) O(n log n) O(n2)

Comparison of the 
complexity classes 

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
38

Test benchmark
• The comparison of the program 

effectiveness  designed for performing 
the same task, can be also done 
experimentally by using a test 
benchmark.  Small set of typical and 
representative input data is used which 
are treated as a benchmark.

• For example, test benchmark enabling
comparison of sorting algorithms can be 
based on randomly organised data of 
different size. 



20

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
39

Time complexity

Execution time is a function T(n), which 
determines the number of time units, 
necessary for program or algorithm 
execution for n-size problem. 

If the execution time depends on the 
particular input data (not only their size) the  
T(n) function is defined the worst-case 
execution time (WCET).

The other measure used for evaluating time 
complexity is also an average execution 
time, obtained from algorithm runs on 
different data sets. 

Lidia Jackowska-Strumiłło & Anna Fabijańska, Introduction to Algorithmics 
40

Experimental checking of 
computational complexity

By measuring different execution times of the 
algorithm for input data sets of different size the 
algorithm complexity class can be experimentally 
verified.   

Example:
If an algorithm is of time complexity class O(n2), 
then the time of algorithm execution for n
elements is roughly proportional to the second 
power of n, therefore: 

where: n - number of processed elements, 
t(n) - processing time for n-elements,
c - a constant.

This relationship can be checked experimentally.

2)( cnnt ≈


