
1

87

Side effects

The actual order in which expressions are evaluated is
not specified for most of the operators in C. Because
this sequence of evaluation is determined within the
compiler depending on context, some unexpected
results may occur when using certain operators. These
unexpected results are caused by side effects.

Function calls, nested assignment instructions and
increment and decrement operators may cause side
effects.

Examples:

x = f() + g(); /*Undefined calling order */

printf("%d %f\n", ++n, pow(2,n));

a[i] = i++; /* The increment of i may occur before or
after the subscript is evaluated. */

 Computer Engineering Department, TU Lodz

88

The while statement

while (expression) statement

The while statement evaluates a control
expression before each execution of the loop
body. If the control expression is true
(nonzero), the loop body is executed.

Example:

while ((c = getchar()) == ‘ ‘ || c == ‘\n’ || c == ‘\t’)

; /*empty statement – omit white characters */

 Computer Engineering Department, TU Lodz

2

89

The while and the for loops

The for statement:

for (expression1; expression2; expression3)

statement

is equivalent to the following code:

expression1;

while (expression2)

{

statement

expression3;

}

 Computer Engineering Department, TU Lodz

90

Example 1

include <stdio.h>

/* program prints the following numbers from
1 to 100 and their squares on the screen */

int main (void)

{

int i;

for (i =1; i <=100; i++)

printf("Number %d\t%d\n", i, i*i);

return 0;

}

 Computer Engineering Department, TU Lodz

3

91

Example 2

include <stdio.h>

/* program prints the following numbers from
1 to 100 and their squares on the screen */

void main ()

{

int i =1;

while (i <=100)

{

printf("Number %d\t%d\n", i, i*i);

i++;

}

}

 Computer Engineering Department, TU Lodz

92

ExampleExample 1313

 Computer Engineering Department, TU Lodz

Problem: For a given natural number n compute the smallest

power of two greater than n.

Discussion:

Input: n

Output: power of two, exponent

Check the increasing powers of two in a loop, while the

condition power <= n is true.

Algorithm:

• read n;

• set initial values (exponent:=0; power:=1;);

• check, if power <= n;

• while power <= n, multiply it by 2 and increment exponent;

• write the results.

4

93

read n

start

power=1

exponent=0

power<=n

power=power*2

exponent=exponent+1

Yes

write power, exponent

stop

No

/*File Power_two.c

Program finds the smallest power of two greater than n*/

#include <stdio.h>

int main()

{

int, n, power, exponent;

printf("Program finds the smallest power of two\n");

printf("greater than the given n\n");

printf("Enter natural number n: ");

scanf("%d", &n);

exponent =0; power =1; // initial values

while(power<=n) // loop condition

{

power = power *2;

exponent = exponent +1;

} // end of the loop

printf("The smallest power of 2 greater than %d is %d for the exponent

%d\n", n, power , exponent);

getchar();

return 0;

}

 Computer Engineering Department, TU Lodz

5

95

Standard mathematical functions

<math.h> header file
sin(x) -sine x (argument in radian),

cos(x) -cosine (argument in radian),

tan(x) - tangent x (argument in radian),

asin(x) - arc sine x (result in the range [-π /2, π /2]),

acos(x) - arc cosine x (result in the range [0 , π]),

atan(x) – arc tangent x (result in the range [-π /2, π /2]),

atan2(x,y) – arc tangent x/y (result in the range [-π, π]),

sinh(x) - hyperbolic sine of x,

cosh(x) - hyperbolic cosine of x,

tanh(x) - hyperbolic tangent of x,

 Computer Engineering Department, TU Lodz

96

exp(x) - exponential function of x: ex,

log(x) - the natural logarithm of x: ln(x), x > 0,

log10(x) - the base-ten logarithm of x: log10(x), x > 0,

pow(x,y) – power function: xy, a domain error occurs if:

x=0 and y≤0, or x<0 and y is not an integral value,

sqrt(x) - the nonnegative square root of x:

fabs(x) - the absolute value of a floating-point number x: |x|

ceil(x) - the smallest integral value not less than x,

floor(x) - the largest integral value not greater than x,

result of double type.

0:, ≥xwherex

 Computer Engineering Department, TU Lodz

Standard mathematical functions

<math.h> header file

6

97

Basic data types

� C has only a four basic types: char, int, float,
double.

� Ranges or properties of some basic types
can be modified by the use of specified
qualifiers:

signed, unsigned, short, long, const, volatile.

Examples:

signed int x; or int x;

short int y; or short y;

long int z; or long z;

unsigned int b; or unsigned b;

unsigned short int b; or unsigned short b;

 Computer Engineering Department, TU Lodz

98

Basic data types - qualifiers

Allowed combinations of basic types and

qualifiers

qualifier\type char int float double

signed x x

unsigned x x

short x

long x x

const x x x x

volatile x x x x

 Computer Engineering Department, TU Lodz

7

99

Sizes and Ranges of Data Types

for 32-bits (16-bits) machines

81.798*10308…2.225*10-308double

43.403*1038…1.175*10-38float

40...232 -1unsigned long

4-231 ...231 -1long

4 (2)0...232 -1 (0...216 -1)unsigned

4 (2)-231 ...231 -1 (-215 ...215 -1)int

20..65535unsigned short

2-32768..32767short

10..255unsigned char

1-128..127char

Size

in bytes
RangeType

 Computer Engineering Department, TU Lodz

100

const and volatile qualifiers

� const and volatile qualifiers may be used in

declarations before any type.

� The const type qualifier is used to qualify an

object whose value cannot be changed –

declaration of constant.

� The volatile storage class is specified for those

variables that can be modified in ways unknown

to the compiler. Thus, if an object is declared

volatile, every reference to the object in the

source code results in a reference to memory in

the object code.

 Computer Engineering Department, TU Lodz

8

101

Examples

const float pi = 3.14; // definition and initialization

volatile int temperature;

volatile float pressure;

printf("Carrent temperature = %d oC, and pressure=

%f Pa\n", temperature, pressure);

 Computer Engineering Department, TU Lodz

102

Symbolic constants, #define directive

The #define directive has the following syntax:

#define identifier replacement-list newline

The replacement list is a sequence of
preprocessing tokens, which is substituted for
every occurrence of that macro identifier in
the program text.

Examples:

#define PI 3.14

#define MACHINES_NUMBER 4

#define ENGINES_NUMBER 4

 Computer Engineering Department, TU Lodz

