
1

163

Organisation of the program in
C language

//source file prog1.c

include <stdio.h>

include ”myprog.h”

void function3 (void)

{ …..

}

void main (void)

{

function1 ();

function2 ();

}

//source file prog2.c

include <stdio.h>

include ”myprog.h”

void function1 (void)

{ …..

}

void function2 (void)

{

function3 ();

}

 Computer Engineering Department, TU Lodz

164

Scope of functions and variables

In the C language there are four storage

classes, identified by qualifiers:

� auto

� register

� static

� extern

 Computer Engineering Department, TU Lodz

2

165

Scope of functions and variables

//file prog1.c

……

int b = 3; //global var.

void main (void)

{

int x; //local var.

function1 ();

}

void function2 (void)

{ …..

char z; //local var.

}

//file prog2.c

……

extern int b; //external var.

void function1 (void)

{

register int x;//internal var.

function2 ();

}

auto

static

extern

register

 Computer Engineering Department, TU Lodz

166

//file prog1.c

……

int b = 3; //global var.

void main (void)

{

int x; //local var.

function1 ();

}

void function2 (void)

{ …..

char z; //local var.

}

//file prog2.c

……

extern int b; //external var.

void function1 (void)

{

register int x;//internal var.

function2 ();

}

internal objects

external objects

definition declaration
Scope of functions and variables

 Computer Engineering Department, TU Lodz

3

167

Scope of

variables

xni

a

include <stdio.h>

int x;

void main (void)

{

int n;

if (n>0) {

int i;

for (i=0; i<n; i ++)

...

}

}

void function (char a)

{

…

}
 Computer Engineering Department, TU Lodz

168

Declarations and definitions

� Declaration defines the name of the object, its type

and class, but doesn’t allocate in the memory.

� Definition is a declaration, which additionally

allocates the object in the place of the memory.

It is possible to put the function declarations

(prototypes) and external variable declarations in

the header files.

You must not put the variable definitions

in the header files !

 Computer Engineering Department, TU Lodz

4

169

Visibility and the hiding effects

include <stdio.h>

int x, y;

void main (void)

{

function ();

}

void function (double x)

{

double y;

…

}

y x

x

y x hides x

y hides y

 Computer Engineering Department, TU Lodz

170

Static class

The static variables are all the external

variables and those internal variables, which

are defined as the „static”.

Example:

void sum_of_events (void)

{

static int sum = 1;

sum = sum +1;

}

 Computer Engineering Department, TU Lodz

5

171

The principles of
the structural programming

1. The programs are designed in the descendent

top-down method.

� Main functions which are responsible for

implementation of the task are called from the

highest level of the program.

� Each of the called functions systematises the

solution and if it is necessary calls next

functions.

2. Functions are short and responsible for

performance of one logically defined task.

 Computer Engineering Department, TU Lodz

172

3. Each of the function is maximally independent

from others.

� Information is exchanged between the

functions by arguments and generated by

functions value.

� It is suggested to avoid the unconditional

jumps - goto statements.

The principles of
the structural programming

 Computer Engineering Department, TU Lodz

6

173

Example 25

The following sequence x1 ,x2 , ... , xn (n < 201)

is with the integer elements. Sort the sequence

in a non-decreasing order.

The { xn } sequence is ordered non-

decreasingly if for each i < n occurs: xi ≤ xi+1.

 Computer Engineering Department, TU Lodz

174

Bubble Sort

� While comparing two succeeding elements of the
sequence subsequently for i=1,2,...,n-1 and
swapping them if the inequality xi>xi+1 is true, will
cause the moving of the largest element in the
final position after one sequence pass.

� The similar swapping series can be repeated in
the sequence decreased by one last element. As
a consequence after the second pass the last two
elements of the sequence will be in the right
places. While continuing such a swapping series
for smaller and smaller subsequences will order
all the elements in the {xn} sequence.

 Computer Engineering Department, TU Lodz

7

175

Bubble Sort cont.

� After the k passes the final k elements must be

in the proper positions in the sequence (in

bold). The previous positions were not

necessarily ordered.

� Such a method is recommended for checking

if the sequence is ordered and for putting the

sequence in order, if swapping of minor

numbers is expected, namely if the order was

corrupted only in a few positions.

 Computer Engineering Department, TU Lodz

176

Bubble sort, example

x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] comments

6 2 7 1 8 3 9 5 original sequence

2 6 swap x[1]

and x[2]

1 7 swap x[3]

and x[4]

3 8 swap x[5]

and x[6]

5 9 swap x[7]

and x[8]

2 6 1 7 3 8 5 9 after one pass

 Computer Engineering Department, TU Lodz

8

177

x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] comments

2 6 1 7 3 8 5 9 after one pass

1 6 swap x[2]

and x[3]

3 7 swap x[4]

and x[5]

5 8 swap x[6]

and x[7]

2 1 6 3 7 5 8 9 after two passes

 Computer Engineering Department, TU Lodz

178

x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] comments

2 1 6 3 7 5 8 9 after two passes

1 2 swap x[1]

and x[2]

3 6 swap x[3]

and x[4]

5 7 swap x[5]

and x[6]

1 2 3 6 5 7 8 9 after 3 passes

5 6 swap x[4]

and x[5]

1 2 3 5 6 7 8 9 after 4 passes

 Computer Engineering Department, TU Lodz

9

179

Program 1

// header file thisprog.h

/* program illustrating organisation of the

program in C language */

void sort_b (int, int[]); //function prototype

void printing (int, int[]);

 Computer Engineering Department, TU Lodz

180

// source file sorting.c

/* program illustrating organisation of the

program in C language */

include <stdio.h>

include <stdlib.h>

include "thisprog.h"

void sort_b (int n, int a[])

{

int p,i,aa;

 Computer Engineering Department, TU Lodz

10

181

do {

p=0;

for (i=0; i<n-1; i++) {

if (a[i]>a[i+1])

{

aa=a[i];

a[i]=a[i+1];

a[i+1]= aa;

p=1; //swap

}

}

} while (p!=0);

}

 Computer Engineering Department, TU Lodz

182

// source file program.c

/* program illustrating organisation of the
program in C language */

include <stdio.h>

include <stdlib.h>

include "thisprog.h"

int main (void)

{

int n,j;

int a[200];

char c;

 Computer Engineering Department, TU Lodz

11

183

system("cls"); //stdlib.h – clearing the screen

fflush(stdin); //stdio.h – clearing the buffer

printf("Program for sorting the integer elements
of the sequence\n\n");

printf("Enter the number of the sequence
elements n<201 ");

scanf("%d", &n);

printf("\nEnter the consecutive sequence
elements \n\n");

for (j=0; j<n; j++) {

printf("a[%d] = ", j+1);

scanf("%d", &a[j]);

}

 Computer Engineering Department, TU Lodz

184

system ("cls");

printf ("The given sequence:\n\n");

printing (n,a);

printf ("\n\n");

sort_b (n,a);

printf ("The sequence sorted non-
decreasingly:\n\n");

printing (n,a);

printf ("\n\n");

c = getchar();

return 0;

}

 Computer Engineering Department, TU Lodz

12

185

void printing (int k, int b[])

{

int i;

for (i=0; i<k; i++) {

printf(" %6d", b[i]);

if ((i+1)%10==0) printf("\n");

}

}

 Computer Engineering Department, TU Lodz

186

Iterative algorithms

1. Factorial function - n!

(for non-negative integer arguments)

(a) 0! = 1,

(b) n! = 1·2·3·…·(n-1)·n, for n>0

Example 1

int i,s,n;

i=0; s=1;

while (i<n) {

i=i+1; s = s*i;

}

 Computer Engineering Department, TU Lodz

13

187

Recursive algorithms

1. Factorial function - n!

(for non-negative integer arguments)

(a) 0! = 1,

(b) if n>0 then n! = n (n-1)!
The function being defined is applied within its own definition

Example 2

int factorial (unsigned int n)

{ int s=1;

if (n>0) s = n* factorial (n-1);

return s;

}

 Computer Engineering Department, TU Lodz

188

Recursion

� In the C language functions can be called
recursively, namely function can call itself
both directly and indirectly.

� The function called in a recursive way is given
a new set of all the automatic variables,
independent from the variables from the
previous function calls.

� The recursion doesn’t save on the memory,
doesn’t speed up the function execution, but
usually simplify understanding of some
algorithms.

 Computer Engineering Department, TU Lodz

14

189

„Quicksort"

�This is the sorting method through the division.

�This method enables to sort efficiently due to the
replacement of the elements which are far away from each
other.

�After the choice of the exemplary element w the array is
searched simultaneously from the left to the right side
searching for xi ≥ w and from the right to the left side
searching for xi ≤ w.

�The found sequential pairs of the elements are beeing
swaped as long as they are fully searched and the sequence
is divided into 2 sub-sequences: xi ≤ w elements and xi ≥ w
elements. This operation is called the partition.

�The same method of the partitioning is used for the each of
the sub-sequences recursively as long as 1-element
sequence is acquired.

 Computer Engineering Department, TU Lodz

190

x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] comments

6 2 7 3 8 1 9 5 original sequence

1 6 swap x[1]

i x[6]

3 7 swap x[3]

i x[4]

1 2 3 7 8 6 9 5 sequence

partition, i=4, j=3

1 2 3 1 sub-sequence,

i=3, j=1

1 2 3 1-element

sub-tasks

Example – Quicksort
i j

 Computer Engineering Department, TU Lodz

15

191

x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] comments

7 8 6 9 5 second

sub-sequence

5 7 swap x[4]

and x[8]

6 8 swap x[5]

and x[6]

5 6 8 9 7 sequence

partition i=6, j=5

5 6 2-element

sub-task

5 1-element

sub-task

 Computer Engineering Department, TU Lodz

192

x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] comments

8 9 7 3-element

sub-task

7 9 swap x[7]

i x[8]

8 7 9 sequence

partition, i=8, j=7

8 7 2-element

sub-sequence

7 8 swap x[6]

i x[7]

7 8 1-element

sub-sequences

ordered

sequence

98765321

 Computer Engineering Department, TU Lodz

16

193

Program 2

// header file thisprog.h

/* program for sorting the sequence */

void sort_b (int, int[]); //function prototype

void sort_q (int, int, int[]);

void choice(int, int[]);

void printing (int, int[]);

 Computer Engineering Department, TU Lodz

194

// source file sorting.c

include <stdio.h>

include <stdlib.h>

include "thisprog.h"

void sort_b (int n, int a[]) //bubble sorting

{

…

}

void sort_q (int l, int p, int a[]) //quick sorting

{

int i,j,aa,w;

i=l; j=p;

w=a[(l+p)/2];

 Computer Engineering Department, TU Lodz

17

195

do {

while (a[i]<w) i++;

while (w<a[j]) j--;

if (i<=j)

{

aa=a[i]; //swaps a[i] and
a[j]

a[i]=a[j]; a[j]= aa;

i++; j--;

}

} while (i<=j);

if (l < j) sort_q (l, j, a);

if (i < p) sort_q (i, p, a);

}

 Computer Engineering Department, TU Lodz

196

void choice (int n, int a[])

/* choice of the sorting method */

{

int p;

char c;

do {

fflush(stdin); //stdio.h – clearing the buffer

p=0;

printf("choose the sorting method:
b - bubble, q - quick\n");

c = getchar();

 Computer Engineering Department, TU Lodz

18

197

switch (c)

{

case 'b': sort_b (n,a);

break;

case 'q': sort_q (0,n-1,a);

break;

default: printf ("Error! "); p=1;

break;

}

} while (p);

}

 Computer Engineering Department, TU Lodz

198

// source file program.c

include <stdio.h>

include <stdlib.h>

include "thisprog.h"

int main (void)

{

…

/* sort_b (n,a); */ choice (n,a);

…

}

 Computer Engineering Department, TU Lodz

19

199

Program 3

// header file thisprog.h

/* program for the comparison of sorting

methods - their complexity*/

int sort_b (int, int[]); //function prototype

int sort_q (int, int, int[]);

int choice (int, int[]);

void printing (int, int[]);

void enter (int, int[]);

 Computer Engineering Department, TU Lodz

200

// source file sorting.c

include <stdio.h>

include <stdlib.h>

include "thisprog.h"

int sort_b (int n, int a[]) //bubble sorting

{

int l=0; //for calculating the number of swaps

…

p=1; //swap

l++;

…

return l;

}

 Computer Engineering Department, TU Lodz

20

201

int sort_q (int l, int p, int a[]) //quicksort

{

static int lz=0; // for calculating the number of

swaps

int i,j,aa;

i=l; j=p;

register int w;

w=a[(l+p)/2];

 Computer Engineering Department, TU Lodz

202

do {

while (a[i]<w) i++;

while (w<a[j]) j--;

if (i<=j)

{

aa=a[i]; //swap a[i] and a[j]

a[i]=a[j]; a[j]= aa;

i++; j--; lz++;

}

} while (i<=j);

if (l < j) sort_q (l, j, a);

if (i < p) sort_q (i, p, a);

return lz;

}
 Computer Engineering Department, TU Lodz

21

203

int choice (int n, int a[])

/* choice of the sorting method */

{

int p, l;

char c;

do {

fflush(stdin); //stdio.h – clearing the buffer

p=0;

printf("choose the sorting method:
b - bubble, q - quick\n");

c = getchar();

 Computer Engineering Department, TU Lodz

204

switch (c)

{

case 'b': l = sort_b (n,a);

break;

case 'q': l = sort_q (0,n-1,a);

break;

default: printf ("Error! "); p=1;

break;

}

} while (p);

return l; //number of swaps

}

 Computer Engineering Department, TU Lodz

22

205

// source file program.c

include <stdio.h>

include <stdlib.h>

include "thisprog.h"

int main (void)

{

int n, lw;

int a[200];

char c;

…

enter (n,a); // successive elements of the
sequence

 Computer Engineering Department, TU Lodz

206

…

printing(n,a);

…

lw = choice (n,a); /* sort_b (n,a); choice
(n,a);*/

…

printing(n,a);

…

printf("Number of swaps = %d\n",lw);

printf("\n");

c = getchar();

return 0;

}

 Computer Engineering Department, TU Lodz

23

207

void enter (int n, int a[])

{

char c;

int j;

unsigned int seed;

printf("Choose the method of inserting the sequence

of numbers\n");

printf("\tk – from the keyboard,\n\tg – from the

generator of random numbers\n\n");

fflush(stdin); //stdio.h – clearing the buffer

c=getchar();

 Computer Engineering Department, TU Lodz

208

while (c!='k'&& c!='g') {

printf("Error! Enter again\n");

fflush(stdin);

c=getchar();

}

if (c=='k') { //part of the old program:

printf("Enter the consecutive elements of
the sequence \n\n");

for (j=0; j<n; j++) {

printf("a[%d] = ", j+1);

scanf("%d", &a[j]);

} //end of the part

}

 Computer Engineering Department, TU Lodz

24

209

else {

printf("\nEnter seed ");

scanf("%d", &seed);

printf("\n\n");

srand(seed); //stdlib.h

for (j=0; j<n; j++) a[j]=rand(); //stdlib.h

}

}

void printing (int k, int b[])

{ … }

 Computer Engineering Department, TU Lodz

210

Write the program finding the greatest common

divisor of two natural numbers.

Use Euclide’s recursive algorithm.

Example 26

 Computer Engineering Department, TU Lodz

25

211

/* program finding the greatest common

divisor of two natural numbers */

include <stdio.h>

int GCD (int, int);

int main (void)

{

int w,x,y;

printf ("Program finding the greatest common divisor of
two natural numbers \n\n");

printf ("Enter two natural numbers");

scanf ("%d %d", &x, &y);

w = GCD (x,y);

printf ("Greatest common divisor of numbers %d and
%d is %d\n", x,y,w);

return 0;

}  Computer Engineering Department, TU Lodz

212

int GCD (int x, int y) // greatest common divisor

{

int r, z;

r = x % y; // x / y = c*y + r

// {F: x>0 and y>0}

if (r == 0) z = y; else z = GCD (y,r);

// {G: z = GCD (x,y)}

return z;

}

 Computer Engineering Department, TU Lodz

