
1

Mathematical Linguistics
Formal Languages and Grammars

Syntax Analysis

© dr hab. inż. Lidia Jackowska-Strumiłło

Computer Engineering Department
Technical University of Lodz

History of programming languages

Fortran

Algol 60

Algol 60

Pascal

C

Mesa

Modula 2

C++

Smalltalk

Dustributed*
Processes

Concurent

Pascal
ML:

ISWIM*

Mac
Lisp

Scheme
SASL

Zeta
Lisp

Miranda

CSP*

Ada

Haskel

CLOS

Common
Lisp

Gofer

Ada 95

Standard

ML

Inter
Lisp

Lisp

Prolog

Oberon

Modula 3

C++ standard

Simula

CPL*

BCPL

1955

1960

1965

1970

1975

1980

1985

1990

1995

1955

1960

1965

1970

1975

1980

1985

1990

1995

2

60

70

80

90

60

70

80

90

Fortran

PL/1

Pascal

Modula-2

Algol 68

Ada Beta

Modula-3

Ada9X

Zależność między językiem C++ a innymi językami programowania w ujęciu historycznym

C++

Clu

ML

Smalltalk-80

C++arm

C++std

Eiffel

Objective C CLOS

ANSI C

C z klasami

Simula 67

Lisp
Algol 60

CPL

BCPL

C

Dependence between C++ and other programming languages

Language Definition

� The basis of each language is a dictionary. In
formal language theory, elements of the
dictionary (words) are called symbols (terminals).

� A sequence of words, which is built according to
strict rules is called a sentence.

� A set of rules, which define a set of correct
sentences is called a grammar or a syntax.
Syntax (language structure) allows to check, if the
given set of words is a sentence.

� Syntax and semantics (meanings) of the language
are in the close relation, but in formal language
theory only the purely syntactical aspects of
languages are studied.

3

Formal Languages

� A formal language is a subset of finite

strings of elements of the finite set which

is called the alphabet.

� A formal language is defined by means

of a formal grammar, and the same

language can be defined by many different

grammars.

EXAMPLE 1

Sentences that can be constructed from this

formal grammar:

� flowers bloom

� stars shine

� stars bloom

� flowers shine

<sentence> ::= <subject > <predicate>

<subject>::= flowers | stars

<predicate>::= bloom | shine

4

BNF (Backus-Naur Form)

� Start symbol: <sentence>,

� Non-terminal symbols (non-terminals):

<sentence>, <subject>, <predicate>;

� Terminal symbols (terminals): flowers, stars,

bloom, shine;

� Metasymbols BNF notation : <, >, ::=, |

� Production rules – rules which allow to define

a language.

EXAMPLE 1

Sentences generated by this grammar:

xz, yz, xw, yw.

S ::= A B

A ::= x | y

B ::= z | w

By applying rules of consecutive replacements, which

is called a derivation, language sentence can be

generated from the start symbol:

S → AB → xB → xw

S → AB → yB → yz yzS →*

5

Chomsky Grammar
– mathematical definition of a language

1. A language L = L(T,N,P,S) is defined by:

T – a dictionary of terminal symbols;

N – a set of non-terminal symbols;

P – a set of production rules (syntax rules);

S – start symbol, which belongs to N.

Chomsky Grammar, cont.

2. A language L(T,N,P,S) is a set of terminal

symbol sequences ξ, which can be derived

from S according to rule 3:

L = { ξ | S ξ i ξ ∈ T*},

where: Greek letters denote symbol

sequences,

T* - a set of all symbol sequences over T.

6

Chomsky Grammar, cont.

3. A sequence δn can be derived from a

sequence δ0 if and only if such sequences

exist δ1, δ2,7., δn-1, such that each sequence

δi can be directly derived from a sequence δi-1

according to rule 4.

(δ0 δn) ↔ ((δi-1 → δi) for i = 1, 7 , n)

Chomsky Grammar, cont.

4. A sequence η can be directly derived from a

sequence ξ if and only if such sequences

exist α, β, ξ’, η’ and the following conditions

are satisfied:

a) ξ = α ξ’ β

b) η = α η’ β

c) P consists production rule ξ’ ::= η’

7

EXAMPLE 1

A grammar with a recursion, that uses finite number of

rules, allows to generate an infinite number of sentences.

S ::= xA

A ::= z | yA

An example of a set of sentences, which can be generated
from the start symbol S:

xz

xyz

xyyz

xyyyz

…..

EXAMPLE 2

A grammar with a recursion defining integer

numbers:

<integer number> ::= <digit>

|<integer number><digit>

<digit> ::= 0|1|2|3|4|5|6|7|8|9

Examples of sentences:

1 4321

21 54321

321 154321

8

EXAMPLE 3

A grammar with a recursion:

<sentence> ::= <subject> <predicate>

<subject> ::= James | Lucy

<predicate> ::= <verb> <noun phrase>

<verb> ::= eats | likes

<noun phrase> ::= <adjective><noun phrase>|<noun>

<noun> ::= nuts | almonds

<adjective>::= salted | crisp | roasted

Examples of sentences:

James likes almonds Lucy eats nuts

James likes roasted almonds Lucy eats crisp nuts

James likes salted roasted almonds

James likes crisp salted roasted almonds

Chomsky Hierarchy

The Chomsky hierarchy consists of the following levels:

type-0 – recursively enumerable languages

recursive languages

type-1 – context-sensitive languages

type-2 – context-free languages

type-3 – regular languages

9

Regular Languages

Regular languages – formal languages, that are

generated by regular grammars or regular

expressions. A regular grammar restricts its

rules to the following forms:

A ::= a

A ::= aB

A ::= ε

where: A ∈ N, B ∈ N, a ∈ T

Context-sensitive and Context-free

Languages

Context-free language – a formal language, which

is defined by the set of context-free rules, i.e.

rules of the form:

A ::= ξ and (A ∈ N, ξ ∈ (N ∪ T)*)

Context-sensitive language – formal language,

which is defined by the rules of the form:

αAβ ::= αξβ for non-empty ξ

(A ∈ N, α,β ∈ (N ∪ T)*, ξ ∈ (N ∪ T)+)

10

Recursive and Recursively Enumerable

Languages

Recursive language – a formal language, for which
decisive algorithm exists, if the given string
belongs to the language or not (the algorithm halts
in all cases).

Recursively enumerable language – formal
language, for which decisive algorithm exists, if
the given string belongs to the language or not;
the algorithm must halt and accept the strings
belonging to the language, and for the strings do
not belonging to the language, it can either halt
and reject the string or do not give any answer at
all (an infinite loop).

α ::= ξ for non-empty α (α ∈ (N ∪ T) +, ξ ∈ (N ∪ T)*)

Syntax Analysis

� Syntax analysis deals with derivation of sentence

structures and sentences.

� Main task of syntax analysis is the design of

derivation algorithms for languages with complex

grammatical structures.

11

Top-down Parsing

Top-down parsing can be viewed as an attempt to

find left-most derivations of an input-stream by

searching for parse-trees using a top-down

expansion of the given formal grammar rules.

As the result of top-down analysis, the language

sentence is generated from the start symbol.

EXAMPLE 1

<sentence> stars shine

<subject> <predicate> stars shine

stars < predicate > stars shine

< predicate > shine

shine shine

- - - - - -

<sentence> ::= < subject > <predicate>

< subject >::= flowers | stars

<predicate>::= bloom | shine

Do the sentence "stars shine" belong to the language?

12

EXAMPLE 2

S xyyz

xA xyyz

A yyz

yA yyz

A yz

yA yz

A z

z z

-- --

S ::= xA

A ::= z | yA

Does the sentence "xyyz" belong to the language?

EXAMPLE 3

S xxxz

A xxxz

xA xxxz

A xxz

xA xxz

A xz

xA xz

A z

S:: = A | B

A:: = xA | y

B:: = xB | z

Parsing procedure for sentence "xxxz"

FIRST/FIRST conflict

13

LL(1) Grammars

RULE 1:

For the given grammar:

A :: = ξ1 | ξ2 | 7 | ξn

the FIRST sets in sentences, which can be derived
from ξi must be separated, i.e.

FIRST(ξi) ∩ FIRST(ξj) = ∅ for each i ≠ j.

LL(1) Grammars

FIRST(ξξξξ) is a set of all the terminal symbols, which can
occur at the first position in the sentences derived from
ξ. This set can be determined from the following rules:

1. If the first symbol of the argument is a terminal symbol
then

FIRST(aξ) = {a}

2. If the first symbol is a non-terminal and the production
exists

A ::= α1| α2 | 7 | αn

then

FIRST(Aξ)= FIRST(α1) ∪ FIRST(α2) ∪ 7 ∪ FIRST(αn)

14

EXAMPLE 3

S xxxz

xS xxxz

S xxz

xS xxz

S xz

xS xz

S z

C z

z z

-- --

S:: = A | B

A:: = xA | y

B:: = xB | z

Parsing procedure for sentence "xxxz"

S:: = C | xS

C:: = y | z

Left-factoring

Production of a form:

A:: = αξ1 | αξ2 | 7 | αξn

should be rewritten as:

A :: = αA’

A’ :: = ξ1 | ξ2 | 7 | ξn

15

EXAMPLE 4

S x

Ax x

xx x

x --

Parsing procedure

for sentence "x"

S :: = Ax

A :: = x | ε

Given a grammar:

where: ε is an empty symbol

FIRST/FOLLOW conflict

RULE 2:

For the each symbol A ∈ N, from which an

empty symbol can be derived (A ε), a set of

its FIRST symbols must be separated from the

set of symbols, which can follow any sequence

derived from A, i.e.

FIRST(A) ∩ FOLLOW(A) = ∅

LL(1) Grammars

16

A set FOLLOW(A) is determined as follows:

for each production Pi of a form:

X :: = ξAη

Si means FIRST(ηi) and a set FOLLOW(A) is a

sum of all sets Si. If only an empty symbol can

be derived from one ηi then a set FOLLOW(X)

must be included into FOLLOW(A) also.

LL(1) Grammars

Recursion

Production:

A :: = B | AB

generates sentences: B, BB, BBB, 7

According to rule 1, their usage is forbidden,
because:

FIRST(B)∩ FIRST(AB) = FIRST(B) ≠ ∅

17

Recursion

Production:

A :: = ε | AB

generates sentences: ε, B, BB, BBB, 7

According to rule 1, their usage is forbidden,
because:

FIRST(A) = FIRST(B)

and therefore:

FIRST(A) ∩ FOLLOW(A)≠ ∅.

Left recursion removal

According to 1 & 2 grammatical rules, the usage of left
recursion is forbidden in LL grammars.

Problem solutions:

� exchange of left recursion into right recursion

A :: = ε | BA
� substitution of left recursion with an iteration.

In EBNF notation, description {B} means iteration i.e.
repetition of B symbol zero, one, two, ... or infinite
number of times. Production:

A :: = {B}
generates sentences: ε, B, BB, BBB, 7

18

EXAMPLE 5

S :: = A | S - A

A :: = a | b | c

Given a grammar:

where: {a, b, c, -} ∈ T

a – b – c = ((a – b) – c)

S :: = A | A - S

A :: = a | b | c
(a – (b – c))

These two grammars are not semantically equivalent

Left recursion removal

The following production rule:

A :: = Aα1 | Aα2 | 7 | Aαn | β1 | β2 | 7 | βm

can be rewritten as:

A:: = β1A’ | β2A’ | 7 | βmA’

A’:: = α1A’ | α2A’ | 7 | αnA’ | ε

19

EXAMPLE 5

S :: = A | S - A

A :: = a | b | c a – b – c = ((a – b) – c)

S :: = A S’

S’ ::= -AS’ | ε
A :: = a | b | c

a – b – c

S :: = A {– A}

A :: = a | b | c
a – b – c

Given a grammar:

These grammars are semantically equivalent

Parse tree

� A parse tree (a concrete syntax tree) is

hierarchical structure, which shows graphically

a sentence derivation from a formal grammar.

� A root node is labelled by the start symbol.

Branch nodes are labelled by non-terminal and

leaf nodes by terminal or empty symbols.

� Branch structure represents productions. Main

branch is labelled by the left production side, and

branches derived from it are labelled by the right

production side, in the order from left to right.

20

EXAMPLE 6

<real number> :: = <integer part> . <fraction>

< integer part > :: = < digit > | < integer part > <digit>

< fraction > :: = < digit > | < digit > < fraction >

< digit > :: = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Derive a number 23.45 from the given grammar:

< real number >

< integer part > . < fraction >

< integer part> < digit > < digit > < fraction >

< digit > 3 4 < digit >

2 5

Grammar ambiguity

Problem of grammar ambiguity occurs if

the grammar generates sentences, which

have more than one parse tree.

21

EXAMPLE 1 - grammar ambiguity

Two different parse

trees can be drawn for

the sentence time flies

for the given grammar.

<sentence> ::= <subject> <predicate>

<sentence> ::= <predicate> <object>

<subject> ::= <noun>

<predicate> ::= <verb>

<object> ::= <noun>

<verb> ::= time | flies

<noun> ::= time | flies

<sentence> <sentence>

<subject> <predicate> <predicate> <object>

OR

<noun> <verb> <verb> <noun>

time flies time flies

EXAMPLE 2 - grammar ambiguity

E:: = E – E | 0 | 1

Derive the sentence 1-0-1 from the given grammar:

Two different parse trees can be drawn for the

sentence 1-0-1.

E E

E - E E - E

OR

E - E 1 1 E - E

1 0 0 1

22

EXAMPLE 3 - grammar ambiguity

E:: = E + E | E * E | a | b

Derive the sentence a+b*b from the given grammar:

Two different parse trees can be drawn for the

sentence a+b*b

E E

E * E E + E

OR

E + E b a E * E

a b b b

EXAMPLE 3 - ambiguity removal

E:: = T |E + T | E - T
T:: = F |T * F | T / F
F:: = (E)| a | b

Only one parse trees can be drawn for the sentence

a+b*b

Operators priority is correct for the given grammar!

E

E + T

T T * F

F F b

a b

Derive the sentence a+b*b from the given grammar:

23

EXAMPLE 4 - grammar ambiguity

S :: = if E then S
S :: if E then S else S

Grammar ambiguity is present also in

C and Pascal languages for IF conditional instruction.

It is caused by productions:

Pascal

For the sentence if E1 then if E2 then S1 else S2 two

different parse trees can be derived.

if E1 then if E2 then S1 else S2

S

if E then S

E1

if E then S else S

E2 S1 S2

1)

2) S

if E then S else S

E1 S2

if E then S

E2 S1

24

If-else ambiguity removal

If-else ambiguity problem in Pascal and C is solved in

that way, that the key word else is combined with the

latest key word if.

In this case the considered sentence is interpreted, as it

is shown in parse tree 1.

S ::= <empty>

| stmt

| if E then SL end

| if E then SL else SL end

SL ::= SL; S | S

If-else ambiguity removal in

Modula-2 language

Pascal: if E1 then if E2 then S1 else S2

Modula-2: 1o. if E1 then if E2 then S1 else S2 end end

2o. if E1 then if E2 then S1 end else S2 end

25

if E1 then S1

else if E2 then S2

else if E3 then S3

else S4

Pascal and Modula-2

Pascal:

if E1 then S1

else if E2 then S2

else if E3 then S3

else S4 end
end

end

Modula-2:

Modula-2

if E1 then S1

elsif E2 then S2

elsif E3 then S3

else S4

end

S ::= if E then SL { elsif E then SL } [else SL] end

SL ::= SL; S | S

26

Comparison of BNF and MBNF notations

 MBNF MEANING BNF (EBNF)

1 = is defined as ::=

2 | or |

3 . end of formula a terminating character is not
used

4 [x] option - zero or one repetition
of string x

metasymbols [] are not used

5 {x} zero or multi time repetition of
string x

{x} in EBNF

6 (x | y ... | z) any from strings: x, y,�� ,z metasymbols () are not used

7 "a" terminal symbol
(from the language alphabet)

quotation marks "..." are not used

8 small letters
sequence

non-terminal symbol Non-terminals are inside the
angle brackets <...>", small and
capital letters are used, hyphen is
not obligatory

EXAMPLE

E::= T |E + T | E - T
T::= F |T * F | T / F
F::= (E)| a | b

Corrected grammar of LL(1) class:

A grammar defining arithmetic expressions:

BNF notation

E::= T E’
E’::= +T E’ |-T E’ |ε

T::= F T’
T’::= *F T’ |/F T’ |ε
F::= (E)| a | b

BNF notation

27

EXAMPLE

Corrected grammar defining arithmetic

expressions of LL(1) class:

E = T {("+" |"–") T}.
T = F {("*" |"/") F}.
F = "(" E ")" |"a" |"b".

MBNF notation

In this grammar a recursion was replaced by

an iteration.

S ::= <empty>

| stmt

| begin SL end

SL ::= SL; S | S

Separators and terminators

Pascal: begin S1; S2; S3 end

begin S1; S2; S3; end

begin ;S1;;;; S2; S3;; end

Separators – separate elements

Terminators – occur after each element, i.e. sentence

Pascal:

28

Empty Instruction

Pascal: if E then ; S1; - semantic error

if E then S1; else S2; - syntax error

Modula-2: if E then S1; S2 end

if E then S1; S2 else S3; S4 end

S ::= <empty>

| stmt

| if E then S

| if E then S else S

| begin SL end

| while E do S

SL ::= SL; S | S

Pascal: S ::= <empty>

| stmt

| if E then SL end

| if E then SL else SL end

| begin SL end

| while E do SL end

SL ::= SL; S | S

Modula-2:

GRAMMARS WITH TRANSLATION

� A grammar with translation is a context-

free grammar, in which a set of terminal

symbols is extended by additional symbols

called symbols of translation.

� Symbols of translation generate an extra

output statement in addition to the

statement generated from the grammar.

29

Example 1

Grammar of arithmetic expressions:

E ::= T El

El ::= +T El | -T El | ε

T ::= F Tl

Tl ::= * F Tl | / F Tl | ε

F ::= - F | (E) | id

id ::= a | b | c

Grammar of arithmetic expressions extended with

translation into RPN (Reverse Polish Notation):

E ::= T El

El ::= +T {+} El | -T {-} El | ε

T ::= F Tl

Tl ::= * F {*} Tl | / F {/} Tl | ε

F ::= - F {-}| (E) | id {id}

id ::= a | b | c

Example 2

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

