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Dependence between C++ and other programming languages

Language Definition

� The basis of each language is a dictionary. In 
formal language theory, elements of the 
dictionary (words) are called symbols (terminals). 

� A sequence of words, which is built according to 
strict rules is called a sentence.

� A set of rules, which define a set of correct 
sentences is called a grammar or a syntax. 
Syntax (language structure) allows to check, if the 
given set of words is a sentence. 

� Syntax and semantics (meanings) of the language 
are in the close relation, but in formal language 
theory only the purely syntactical aspects of 
languages are studied. 
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Formal Languages

� A formal language is a subset of finite 

strings of elements of the finite set which 

is called the alphabet. 

� A formal language is defined by means 

of a formal grammar, and the same 

language can be defined by many different 

grammars.

EXAMPLE 1 

Sentences that can be constructed from this 

formal grammar:

� flowers bloom

� stars shine

� stars bloom

� flowers shine

<sentence> ::= <subject > <predicate>

<subject>::= flowers | stars

<predicate>::= bloom | shine
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BNF (Backus-Naur Form)

� Start symbol: <sentence>,

� Non-terminal symbols (non-terminals): 

<sentence>, <subject>, <predicate>;

� Terminal symbols (terminals): flowers, stars, 

bloom, shine;

� Metasymbols BNF notation :  <, >, ::=, |

� Production rules – rules which allow to define 

a language.

EXAMPLE 1

Sentences generated by this grammar: 

xz, yz, xw, yw.

S ::= A B

A ::= x | y

B ::= z | w

By applying rules of consecutive replacements, which 

is called a derivation, language sentence can be 

generated from the start symbol: 

S → AB → xB → xw

S → AB → yB → yz yzS →*
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Chomsky Grammar 
– mathematical definition of a language 

1. A language L = L(T,N,P,S) is defined by: 

T – a dictionary of terminal symbols;

N – a set of non-terminal symbols;

P – a set of production rules (syntax rules);

S – start symbol, which belongs to N. 

Chomsky Grammar, cont.

2. A language L(T,N,P,S) is a set of terminal 

symbol sequences ξ, which can be derived

from S according to rule 3:

L = { ξ | S      ξ i    ξ ∈ T*}, 

where: Greek letters denote symbol 

sequences,

T* - a set of all symbol sequences over T. 



6

Chomsky Grammar, cont.

3. A sequence δn can be derived from a 

sequence δ0 if and only if such sequences 

exist δ1, δ2,7., δn-1, such that each sequence 

δi can be directly derived from a sequence δi-1

according to rule 4.  

(δ0 δn) ↔ ((δi-1 → δi) for  i = 1, 7 , n) 

Chomsky Grammar, cont.

4. A sequence η can be directly derived from a 

sequence ξ if and only if such sequences 

exist α, β, ξ’, η’ and the following conditions 

are satisfied:

a) ξ = α ξ’ β

b) η = α η’ β

c) P consists production rule ξ’ ::= η’
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EXAMPLE 1

A grammar with a recursion, that uses finite number of 

rules, allows to generate an infinite number of sentences.

S ::= xA

A ::= z | yA

An example of a set of sentences, which can be generated 
from the start symbol S:

xz

xyz

xyyz

xyyyz

…..

EXAMPLE 2

A grammar with a recursion defining integer 

numbers:

<integer number> ::= <digit>

|<integer number><digit>

<digit> ::= 0|1|2|3|4|5|6|7|8|9 

Examples of sentences: 

1 4321

21 54321

321 154321



8

EXAMPLE 3

A grammar with a recursion:

<sentence> ::= <subject> <predicate>

<subject> ::= James | Lucy

<predicate> ::= <verb> <noun phrase>

<verb> ::= eats | likes

<noun phrase> ::= <adjective><noun phrase>|<noun>

<noun> ::= nuts | almonds

<adjective>::= salted | crisp | roasted 

Examples of sentences: 

James likes almonds Lucy eats nuts

James likes roasted almonds Lucy eats crisp nuts

James likes salted roasted almonds

James likes crisp salted roasted almonds

Chomsky Hierarchy

The Chomsky hierarchy consists of the following levels:

type-0  – recursively enumerable languages

recursive languages

type-1  – context-sensitive languages

type-2  – context-free languages

type-3  – regular languages
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Regular Languages

Regular languages – formal languages, that are 

generated by regular grammars or regular 

expressions. A regular grammar restricts its 

rules to the following forms:

A ::= a

A ::= aB

A ::= ε

where: A ∈ N, B ∈ N, a ∈ T

Context-sensitive and Context-free 

Languages

Context-free language – a formal language, which 

is defined by the set of context-free rules, i.e. 

rules of the form:

A ::= ξ and (A ∈ N, ξ ∈ (N ∪ T)*) 

Context-sensitive language – formal language, 

which is defined by the rules of the form:

αAβ ::= αξβ for non-empty ξ

(A ∈ N, α,β ∈ (N ∪ T)*, ξ ∈ (N ∪ T)+)
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Recursive and Recursively Enumerable 

Languages

Recursive language – a formal language, for which 
decisive algorithm exists, if the given string 
belongs to the language or not (the algorithm halts 
in all cases).

Recursively enumerable language – formal 
language, for which decisive algorithm exists, if 
the given string belongs to the language or not; 
the algorithm must halt and accept the strings 
belonging to the language, and for the strings do 
not belonging to the language, it can either halt 
and reject the string or do not give any answer at 
all (an infinite loop).

α ::= ξ for non-empty α (α ∈ (N ∪ T) +, ξ ∈ (N ∪ T)*)

Syntax Analysis

� Syntax analysis deals with derivation of sentence 

structures and sentences. 

� Main task of syntax analysis is the design of 

derivation algorithms for languages with complex  

grammatical structures. 
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Top-down Parsing

Top-down parsing can be viewed as an attempt to 

find left-most derivations of an input-stream by 

searching for parse-trees using a top-down 

expansion of the given formal grammar rules. 

As the result of top-down analysis, the language 

sentence is generated from the start symbol.

EXAMPLE 1

<sentence> stars shine

<subject> <predicate> stars shine

stars < predicate >   stars shine

< predicate >  shine

shine shine

- - - - - -

<sentence> ::= < subject > <predicate>

< subject >::= flowers | stars

<predicate>::= bloom | shine

Do the sentence "stars shine" belong to the language?
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EXAMPLE 2

S xyyz

xA xyyz

A yyz

yA yyz

A yz

yA yz

A z

z z

-- --

S ::= xA

A ::= z | yA

Does the sentence "xyyz" belong to the language?

EXAMPLE 3

S xxxz

A xxxz

xA xxxz

A xxz

xA xxz

A xz

xA xz

A z

S:: = A | B

A:: = xA | y

B:: = xB | z

Parsing procedure for sentence "xxxz"

FIRST/FIRST conflict



13

LL(1) Grammars

RULE 1:

For the given grammar:

A :: = ξ1 | ξ2 | 7 | ξn

the FIRST sets in sentences, which can be derived 
from  ξi must be separated, i.e.

FIRST(ξi) ∩ FIRST(ξj) = ∅ for each i ≠ j.

LL(1) Grammars

FIRST(ξξξξ) is a set of all the terminal symbols, which can 
occur at the first position in the sentences derived from 
ξ. This set can be determined from the following rules:

1. If the first symbol of the argument is a terminal symbol 
then

FIRST(aξ) = {a}

2. If the first symbol is a non-terminal and the production 
exists

A ::= α1| α2 | 7 | αn

then 

FIRST(Aξ)= FIRST(α1) ∪ FIRST(α2) ∪ 7 ∪ FIRST(αn)
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EXAMPLE 3

S xxxz

xS xxxz

S xxz

xS xxz

S xz

xS xz

S z

C z

z z

-- --

S:: = A | B

A:: = xA | y

B:: = xB | z

Parsing procedure for sentence "xxxz"

S:: = C | xS

C:: = y | z

Left-factoring

Production of a form:

A:: = αξ1 | αξ2 | 7 | αξn

should be rewritten as:

A :: = αA’

A’ :: = ξ1 | ξ2 | 7 | ξn
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EXAMPLE 4

S x

Ax x

xx x

x --

Parsing procedure 

for sentence "x"

S :: = Ax

A :: = x | ε

Given a grammar:

where: ε is an empty symbol

FIRST/FOLLOW conflict

RULE 2:

For the each symbol A ∈ N, from which an 

empty symbol can be derived (A      ε), a set of 

its FIRST symbols must be separated from the 

set of symbols, which can follow any sequence 

derived from A, i.e.

FIRST(A) ∩ FOLLOW(A) = ∅

LL(1) Grammars
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A set FOLLOW(A) is determined as follows: 

for each production Pi of a form:

X :: = ξAη

Si means FIRST(ηi) and a set FOLLOW(A) is a 

sum of all sets Si. If only an empty symbol can 

be derived from one ηi then a set FOLLOW(X)  

must be included into FOLLOW(A) also. 

LL(1) Grammars

Recursion

Production:

A :: = B | AB

generates sentences:  B, BB, BBB, 7  

According to rule 1, their usage is forbidden, 
because:

FIRST(B)∩ FIRST(AB) = FIRST(B) ≠ ∅
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Recursion

Production:

A :: = ε | AB

generates sentences: ε, B, BB, BBB, 7 

According to rule 1, their usage is forbidden, 
because:

FIRST(A) = FIRST(B)

and therefore:

FIRST(A) ∩ FOLLOW(A)≠ ∅.

Left recursion removal

According to 1 & 2 grammatical rules, the usage of left 
recursion is forbidden in LL grammars. 

Problem solutions:

� exchange of left recursion into right recursion

A :: = ε | BA
� substitution of left recursion with an iteration.

In EBNF notation, description {B} means iteration i.e. 
repetition of B symbol zero, one, two, ... or infinite 
number of times. Production:

A :: = {B}
generates sentences:  ε, B, BB, BBB, 7
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EXAMPLE 5

S :: = A | S - A

A :: = a | b | c

Given a grammar:

where: {a, b, c, -} ∈ T

a – b – c = ((a – b) – c)

S :: = A | A - S

A :: = a | b | c
(a – (b – c))

These two grammars are not semantically equivalent

Left recursion removal

The following production rule:

A :: = Aα1 | Aα2 | 7 | Aαn | β1 | β2 | 7 | βm

can be rewritten as:

A:: = β1A’ | β2A’ | 7 | βmA’

A’:: = α1A’ | α2A’ | 7 | αnA’ | ε



19

EXAMPLE 5

S :: = A | S - A

A :: = a | b | c a – b – c = ((a – b) – c)

S :: = A S’

S’ ::= -AS’ | ε
A :: = a | b | c

a – b – c

S :: = A {– A}

A :: = a | b | c
a – b – c

Given a grammar:

These grammars are semantically equivalent

Parse tree

� A parse tree (a concrete syntax tree) is  

hierarchical structure, which shows graphically 

a sentence derivation from a formal grammar. 

� A root node is labelled by the start symbol. 

Branch nodes are labelled by non-terminal and 

leaf nodes by terminal or empty symbols. 

� Branch structure represents productions. Main 

branch is labelled by the left production side, and 

branches derived from it are labelled by the right 

production side, in the order from left to right.
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EXAMPLE 6

<real number> :: = <integer part> . <fraction>

< integer part > :: = < digit > | < integer part > <digit>

< fraction > :: = < digit > | < digit > < fraction >

< digit > :: = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Derive a number 23.45 from the given grammar:

< real number >

< integer part > . < fraction > 

< integer part> < digit > < digit > < fraction >

< digit > 3 4 < digit > 

2 5

Grammar ambiguity

Problem of grammar ambiguity occurs if 

the grammar generates sentences, which 

have more than one parse tree.  
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EXAMPLE 1 - grammar ambiguity 

Two different parse 

trees can be drawn for 

the sentence time flies 

for the given grammar.

<sentence> ::= <subject> <predicate>

<sentence> ::= <predicate> <object> 

<subject> ::= <noun> 

<predicate> ::= <verb>

<object> ::= <noun> 

<verb> ::= time | flies

<noun> ::= time | flies

<sentence> <sentence>

<subject> <predicate> <predicate> <object>

OR

<noun> <verb> <verb> <noun> 

time flies time flies 

EXAMPLE 2 - grammar ambiguity 

E:: = E – E | 0 | 1

Derive the sentence 1-0-1 from the given grammar:

Two different parse trees can be drawn for the 

sentence 1-0-1.

E                                                                E

E         - E                                             E        - E

OR                                                  

E         - E        1                                              1          E      - E

1                      0                                                                  0                1
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EXAMPLE 3 - grammar ambiguity 

E:: = E + E | E * E | a | b

Derive the sentence a+b*b from the given grammar:

Two different parse trees can be drawn for the 

sentence a+b*b

E                                                                E

E         * E                                             E        + E

OR                                                  

E         + E        b a E      * E

a b b b

EXAMPLE 3 - ambiguity removal

E:: = T |E + T | E - T
T:: = F |T * F | T / F
F:: = (E)| a | b

Only one parse trees can be drawn for the sentence

a+b*b

Operators priority is correct for the given grammar!

E

E        + T

T T * F

F F b

a           b

Derive the sentence a+b*b from the given grammar:
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EXAMPLE 4 - grammar ambiguity 

S :: = if E then S
S :: if E then S else S

Grammar ambiguity is present also in 

C and Pascal languages for IF conditional instruction.

It is caused by productions:

Pascal

For the sentence if E1 then if E2 then S1 else S2 two 

different parse trees can be derived. 

if E1 then if E2 then S1 else S2

S

if           E         then            S

E1

if E        then         S        else  S

E2 S1 S2

1)

2) S

if E         then          S          else S

E1 S2

if      E      then      S

E2 S1
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If-else ambiguity removal

If-else ambiguity problem in Pascal and C is solved in 

that way, that the key word else is combined with the 

latest key word if. 

In this case the considered sentence is interpreted, as it 

is shown in parse tree 1. 

S ::= <empty>

| stmt

| if E then SL end

| if E then SL else SL end

SL ::= SL; S | S

If-else ambiguity removal in 

Modula-2 language

Pascal: if E1 then if E2 then S1 else S2

Modula-2: 1o. if E1 then if E2 then S1 else S2 end end

2o. if E1 then if E2 then S1 end else S2 end
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if E1 then S1

else if E2 then S2

else if E3 then S3

else S4

Pascal and Modula-2

Pascal:

if E1 then S1

else if E2 then S2

else if E3 then S3

else S4  end
end

end

Modula-2:

Modula-2

if E1 then S1

elsif E2 then S2

elsif E3 then S3

else S4

end

S ::= if E then SL { elsif E then SL } [else SL] end

SL ::= SL; S | S
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Comparison of BNF and MBNF notations 

  MBNF MEANING  BNF (EBNF) 

1 = is defined as ::= 

2 | or | 

3 . end of formula a terminating character is not 
used 

4 [x] option - zero  or one repetition 
of string x  

metasymbols [  ] are not used 

5 {x} zero  or multi time repetition of 
string x 

{x} in  EBNF 

6 (x | y ... | z) any from strings: x, y,�� ,z metasymbols (  ) are not used 

7 "a" terminal symbol  
(from the language alphabet) 

quotation marks "..." are not used 

8 small letters 
sequence 

non-terminal symbol  Non-terminals are inside the 
angle brackets <...>", small and 
capital letters are used, hyphen is 
not obligatory 

 

EXAMPLE

E::= T |E + T | E - T 
T::= F |T * F | T / F 
F::= (E)| a | b

Corrected grammar of LL(1) class: 

A grammar defining arithmetic expressions:

BNF notation

E::= T E’
E’::= +T E’ |-T E’ |ε

T::= F T’
T’::= *F T’ |/F T’ |ε
F::= (E)| a | b

BNF notation
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EXAMPLE

Corrected grammar defining arithmetic 

expressions of LL(1) class:

E = T {("+" |"–") T}.
T = F {("*" |"/") F}.
F = "(" E ")" |"a" |"b".

MBNF notation

In this grammar a recursion was replaced by 

an iteration.

S ::= <empty>

| stmt

| begin SL end

SL ::= SL; S | S

Separators and terminators

Pascal: begin S1; S2; S3 end

begin S1; S2; S3; end

begin ;S1;;;; S2; S3;; end

Separators – separate elements

Terminators – occur after each element, i.e. sentence

Pascal:
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Empty Instruction

Pascal: if E then ; S1; - semantic error

if E then S1; else S2;  - syntax error

Modula-2: if E then S1; S2 end

if E then S1; S2 else S3; S4 end

S ::= <empty>

| stmt

| if E then S

| if E then S else S

| begin SL end

| while E do S

SL ::= SL; S | S

Pascal: S ::= <empty>

| stmt

| if E then SL end

| if E then SL else SL end

| begin SL end

| while E do SL end

SL ::= SL; S | S

Modula-2:

GRAMMARS WITH TRANSLATION

� A grammar with translation is a context-

free grammar, in which a set of terminal 

symbols is extended by additional symbols 

called symbols of translation.

� Symbols of translation generate an extra 

output statement in addition to the 

statement generated from the grammar.



29

Example 1

Grammar of arithmetic expressions:

E ::= T El

El ::= +T El | -T El | ε

T ::= F Tl

Tl ::= * F Tl | / F Tl | ε

F ::= - F | (E) | id

id ::= a | b | c

Grammar of arithmetic expressions extended with 

translation into RPN (Reverse Polish Notation):

E ::= T El

El ::= +T {+} El | -T {-} El | ε

T ::= F Tl

Tl ::= * F {*} Tl | / F {/} Tl | ε

F ::= - F {-}| (E) | id {id}

id ::= a | b | c

Example 2

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz


