
2011-06-01

1

Mathematical Linguistics

Syntax Analysis

© dr hab. inż. Lidia Jackowska-Strumiłło

Computer Engineering Department

Technical University of Lodz

SYNTAX ANALYSER

Syntax Analyser (syntactic analyser,

parser) is a translator component, which

checks program or program module for

syntax correctness.

Important task in this translation process

is finding and reporting errors in the source

program.

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

2

Compiling Phases

Lexical Analysis

Syntax Analysis

Source Code

Semantic Analysis

Intermediate Code
Generation

Code Generation

Executable
Code

Code Optimization

Management of
Symbol Array

Errors
Management

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

Position of Lexical Analyser

in a Compiler

Symbol

Array

Lexical

Analyser

Source

Code

Syntax

Analyser

Syntax

Lexical
Symbol
(Token)

TreeGive next

token

Intermediate

Code

Other

modules

of front-

compiler

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

3

CLASSIFICATION OF

SYNTAX ANALYSERS

With respect to:

o grammar:

• LR parser (Left-to-right, Rightmost derivation),

• LL parser (Left-to-right, Leftmost derivation);

o direction of derivation :

• Bottom-up parser,

• To-down parser,

• predictive parser;

o way of syntax representation :

• parser for a given grammar,

• parser controlled by the grammar.
Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

Syntax Diagrams

Syntax diagrams are graphical represen-
tations of a grammar, equivalent to
Backus-Naur form. This representation is
made of a set of syntax diagrams, which is
a scheme of syntax analyser program.

Diagrams features:

�Convenient form of language description

�Compact and clear scheme of language
structure

�Help to understand syntax analysis

�A proper form for language design

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

4

Construction Rules of Syntax Diagrams

1. Each diagram defines a non-terminal

symbol. Each non-terminal symbol A is

defined by the production:

A ::= ξ1 | ξ2 |4| ξn

is represented by a syntax diagram of A,

which structure is defined by the right side

of the production according to rules

2 - 6.

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2. Terminals are represented by circles:

Each occurrence of a terminal symbol x in

a sequence ξi corresponds to symbol

recognition instruction and fetching the

next lexical symbol (token) from the input

string.

x

Construction Rules of Syntax Diagrams

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

5

3. Non-terminals are represented by

rectangles:

Each occurrence of non-terminal symbol

A in a sequence ξi corresponds to calling

a function which executes an algorithm

defined by the diagram of symbol A.

A

Construction Rules of Syntax Diagrams

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

4. Each production of a form:

A ::= ξ1 | ξ2 |4| ξn

is transformed into a diagram:

where each is created according to

rules 2 – 6 for ξi.

ξξξξ1

ξξξξ2

ξξξξn

ξξξξi

Construction Rules of Syntax Diagrams

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

6

5. Each sequence of a form:

ξ = α1 α2 4 αn

is transformed into a diagram:

where each is created according to

rules 2 – 6 for αi.

αi

αααα1 αααα2 ααααn

Construction Rules of Syntax Diagrams

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

6. Each sequence of a form:

ξ = { α }

is transformed into a diagram:

where is created from α according

to rules 2 – 6.

αααα

αααα

Construction Rules of Syntax Diagrams

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

7

EXAMPLE 1

Draw syntax diagrams for the given grammar:

A::= x | (B)

B::= AC

C::= {+A}

and reduce them to the optimal form.

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

EXAMPLE 1

CAB

+A

C

A::= x | (B)

B::= AC

C::= {+A}

B)(

x

A

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

8

EXAMPLE 1

Reduced syntax diagram

A

A::= x | (A{+A})

A)(

x

+A

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

EXAMPLE 2

Simplified grammar of arithmetic expressions in BNF

<expression> ::= <term> | <term> + <expression>

<term> ::= <factor> | <factor> * <term>

<factor> ::= <constant> | <variable> | (<expression>)

<variable> ::= x | y | z

<constant> ::= <digit> | <digit> <constant>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

9

EXAMPLE 2

The grammar after transformation into MBNF

expression = term {"+" term}.

term = factor {"*" factor}.

factor = constant | variable | "(" expression ")".

variable = "x" | "y" | "z".

constant = digit {digit}.

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

EXAMPLE 2

Simplified BNF

E::= T {+T }

T::= F {*F }

F::= C | V |(E)

V::= x | y | z

C::= D {D}

D::= 0|1|2|3|4

D::= 5|6|7|8|9

Syntax diagrams

2011-06-01

10

The aim of the syntax analysis is

checking the correctness of the program

grammar and sending messages about the

errors.

All the syntax errors should be reported.

Syntax diagram is a block diagram of the

program algorithm.

Specific rules transforming deterministic

syntax diagram into a program are used

for building the analyser for the given

grammar.

SYNTAX ANALYSER

FOR THE GIVEN GRAMMAR

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

Rules for transforming deterministic

syntax diagram into a program

1. Reduce the number of diagrams as much

as possible, applying the proper

substitutions.

2. Replace each diagram with procedure

declaration according to rules 3 - 7.

3. Replace a diagram’s element

representing terminal symbol x

with an instruction:

if ch = 'x' then read(ch) else error;

x

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

11

4. Replace the diagram’s element

representing another diagram

with an instruction calling the procedure A.

5. Replace a sequence of elements

with a block of instructions:

begin T(S1); T(S2); …; T(Sn) end

where: T(Si) is derived from Si according

to rules 3 – 7.

A

S
1

S
2

S
n

Rules for transforming deterministic

syntax diagram into a program

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

6. Replace an alternative diagram with a

choice or conditional instruction:

if ch in L1 then T(S1) else

if ch in L2 then T(S2) else

4

if ch in Ln then T(Sn) else error;

S
1

S
2

S
n

case ch of

L1: T(S1);

L2: T(S2);

…

Ln: T(Sn);

else error

end

Rules for transforming deterministic

syntax diagram into a program

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

12

7. Replace a loop

with an instruction:

while ch in L do T(S);

where: T(S) is derived from S according to

rules 3 - 7, and a set L = first(S)

S

Rules for transforming deterministic

syntax diagram into a program

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

EXAMPLE 1

Write a program implementing syntax

analyser for the given grammar:

A::= x | (B)

B::= AC

C::= {+A}

A)(

x

+A

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

13

Program analyser;

var ch: char;

Procedure A;

begin

if ch ='x' then read (ch) else

if ch ='(' then

begin

read (ch); A;

while ch ='+' do

begin

read (ch); A;

end;

if ch =')' then read (ch) else error

end else error

end;
Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

{main program}

begin

read (ch); A

end.

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

14

A table-driven parser is a general parsing

program. Its desigh is straightforward for LL(1)

clas grammars. Then the simple top-down

parsing method can be used.

The given grammar, which we assume to be

represented in the form of a deterministic set

of syntax graphs, is translated into an

appropriate data structure.

The program parsing is controlled by the

dynamic data structure representing the given

grammar.

CONSTRUCTING A TABLE-DRIVEN

PARSING PROGRAM

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

The nodes of the data structure

type pointer = ^ node;

node =

record suc,alt: pointer;

case terminal: boolean of

true: (tsym: char);

false: (nsym: hpointer)

 end
sym

alt suc

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

15

The header node

type hpointer = ^ header;

header =

record entry: pointer;

sym: char

 end

sym

entry

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

Rules of graph to data structure

translation

1. Reduce the system of graphs (syntax

diagrams) to as few individual graphs as

possible by suitable substitution.

2. Translate each graph into a data structure

according to the subsequent rules 3 - 6.

3. Replace each diagram’s element

representing terminal or non-terminal

symbol with the appropriate node of the

dynamic data structure.

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

16

4. Translate a sequence of elements

into the following list of data nodes:

S
1

S
2

S
n

S1 S2 Sn

nil

Rules of graph to data structure

translation

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

5. Translate an alternative diagram into the

alternative list of data nodes

S
1

S
2

S
n

Rules of graph to data structure

translation

S1

S2

Sn

nil

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

17

6. Translate a loop

into the structure

S

Rules of graph to data structure

translation

empty

nil

S

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

EXAMPLE

Translate the diagram into the data structure

A)(

x

+

A

(

nil

+

)

nil nil

x

nil nil

A

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

18

RBNF Notation

Each production is terminated by a dot.

BNF RBNF

::= =

| ,

{ [

}]

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

<production> ::= <symbol> = <expression>.

<expression> ::= <term> {,<term>}

<term> ::= <factor> {<factor>}

<factor> ::= <symbol> | [<term>]

Parser accepts productions in RBNF notation.

The meta-language of syntax

productions

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

19

alt suc

FACTORS

1. <symbol> 2. [<term>]

Dynamic data structure

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

TERMS <factor-1> ... <factor-n>

EXPRESSIONS <term-1>, > , <term-n>

Dynamic data structure

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

20

CONSTRUCTING A COMPILER

FOR PL/0 LANGUAGE

Development of a compiler for PL/0

language is divided into the three main steps:

� constructing a parser for PL/0,

� recovering from syntactic errors,

� code generation.

PL/0 is a mini-language designed specially

for didactic purposes. PL/0 is one possible

compromise between sufficient simplicity and

complexity. The designed compiler is

reasonably small, but its project expose the

most fundamental concepts of compiling

high-level languages.

Block

Syntax of PL/0

Program

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

21

Syntax of PL/0

Statement

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

Syntax of PL/0

Expression

Condition

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

22

Factor

Syntax of PL/0

Term

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

First and Follow Symbols in PL/0

Non-terminal

Symbol

First (X) Follow (X)

Block const var procedure

ident call begin if while

. ;

Statement ident call begin if while . ; end

Condition odd + - (ident liczba then do

Expression + - (ident liczba . ; end

then do R)

Term (ident liczba . ; end then

do R) + -

Factor (ident liczba . ; end then

do R) + - * /

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

23

Dependence Diagram for PL/0

Expression

Term

Program

Block

Condition

Statement

Factor
Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

Error Messages of PL/0 Compiler

1. Use = instead of : =

2. = must be followed by a number

3. Identifier must be followed by =

4. const, var, procedure must be followed by an

identifier

5. Semicolon or comma missing

6. Incorrect symbol after procedure declaration

7. Statement expected

8. Incorrect symbol after statement part in block

9. Period expected

10.Semicolon between statements is missing

11.Undeclared identifier

12.Assignment to constant or procedure is not allowed

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

24

Error Messages of PL/0 Compiler

13. Assignment operator : = expected

14. call must be followed by an identifier

15. Call of a constant or a variable is meaningless

16. then expected

17. Semicolon or end expected

18. do expected

19. Incorrect symbol following statement

20. Relational operator expected

21. Expression must not contain a procedure identifier

22. Right parenthesis missing

23. The preceding factor cannot be followed by this

symbol

24. An expression cannot begin with this symbol

30. This number is too large
Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

A PL/0 Machine

The PL/0 machine consists of two stores, an

instruction register and three address registers.

The program store, called code, is loaded by the

compiler and remains unchanged during interpretation

of the code. It can then be considered as a read-only

store.

The data store S is organized as a stack, and all

arithmetic operators operate on the two elements on

top of the stack, replacing their operands by a result.

The top element is addressed (indexed) by the top

stack register T. The instruction register I contains

the instruction that is currently being interpreted. The

program address register P designates the next

instruction to be fetched for interpretation.

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

25

A PL/0 Machine

Every procedure in PL/0 may contain local variables.

Since procedures may be activated recursively, storage

for these local variables may not be allocated before the

actual procedure call. Hence, the data segments for

individual procedures are stacked up consecutively in

the stack store S. Since procedure activations strictly

obey the first-in-Iast-out scheme, the stack is the

appropriate storage allocation strategy. Every

procedure owns some internal information of its own,

namely, the program address of its call (the so-called

return address RA), and the address of the data

segment of its caller (the so-called dynamic link DL).

These two addresses are needed for proper resumption

of program execution after termination of the procedure.

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

A PL/0 Machine

The address of the most recently allocated data

segment, is retained in the base address register B.

Since the actual allocation of storage takes place

during execution (interpretation) time, the compiler

cannot equip the generated code with absolute

addresses. Since it can only determine the location of

variables within a data segment, it is capable of

providing relative addresses only. The interpreter has to

add to this so-called displacement to the base address

of the appropriate data segment. Therefore a second

link chain of data segments is provided (the so-called

static link SL).

Addresses are therefore generated as pairs of

numbers indicating the static level difference and the

relative displacement within a data segment.
Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

26

Stack of PL/0 Machine

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

The Instruction Set of

the PL/0 Machine

1. An instruction to load numbers (literals) onto the

stack (LIT)

2. An instruction to fetch variables onto the top of the

stack (LOD)

3. A store instruction corresponding to assignment

statements (STO)

4. An introduction to activate a subroutine

corresponding to a procedure call (CAL)

5. An instruction to allocate storage on the stack by

incrementing the stack pointer T (INT)

6. Instructions for unconditional and conditional

transfer of control, used in if- and while statements

(JMP, JPC)

7. A set of arithmetic and relational operators (OPR)

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

27

Code Generation

The format of instructions is determined by the

need for three components, namely, an operation code

f and a parameter consisting of one or two parts. In the

case of operators the parameter a determines the

identity of the operator; in the other cases it is either a

number (LIT, INT), a program address (JMP, JPC,

CAL), or a data address (LOD, STO).

Instruction format

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

Code Generation

Examples of expressions in infix and postfix notations

(RPN – Reverse Polish Notation)

Conventional infix

notation

Postfix notation

(RPN)

x+y xy+

(x−y)+z xy−z+

x− (y+z) xyz+−

x*(y+z)*w xyz+*w*

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

28

Code Generation

The patterns of code generated for the if and while

statements

if C then S while C do S

code for condition C

JPC L1

Code for statement S

Ll :

Ll: code for C

JPC L2

code for S

JMP Ll

L2:

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

Cfront Compiler

C pre-processor

Cfront

C compiler

Source code

in C++

Object code

Using Cfront to translate C++ to C

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

29

Intermediate Language (IL)

in Compiling Process

C Fortran Ada

IBM

RS/6000

Sun

Sparc
Cray

C Fortran Ada

IBM

RS/6000

Sun

Sparc
Cray

IL

An IL can reduce the effort needed

to re-source or re-target a compiler

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

Selected Intermediate Languages

Source

Language

Intermediate

Language

Pascal Pcode

Java Java VM

Ada Diana

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

30

.NET

platform

Common

Intermediate

Language

in .NET

platform
Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

Languages supported by .NET platform

Supported programming languages

APL Fortran Pascal

C++ Haskell Perl

C# Java Language Python

COBOL Microsoft JScript® RPG

Component Pascal Mercury Scheme

Curriculum Mondrian SmallTalk

Eiffel Oberon Standard ML

Forth Oz Microsoft Visual Basic®

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

31

Intermediate Language (IL)

in Compiling Process

Program

in Pascal
Compiler

Interpreter

Pcode

Executable

code

Pascal compiler using Pcode IL

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

Porting a compiler using IL

Porting Pascal compiler to another platform

using Pcode intermediate language

Machine A

Compiler code

Compiler

intermediate

language (Pcode)
Compiler Pcode

Interpreter

Compiler

Machine B

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

32

GRAMMARS WITH TRANSLATION

�A grammar with translation is a context-

free grammar, in which a set of terminal

symbols is extended by additional symbols

called symbols of translation.

�Symbols of translation generate an extra

output statement in addition to the

statement generated from the grammar.

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

Example 1
Grammar of arithmetic expressions

E ::= T El

El ::= +T El | -T El | ε

T ::= F Tl

Tl ::= * F Tl | / F Tl | ε

F ::= - F | (E) | id

id ::= a | b | c

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

2011-06-01

33

E ::= T El

El ::= +T {+} El | -T {-} El | ε

T ::= F Tl

Tl ::= * F {*} Tl | / F {/} Tl | ε

F ::= - F {-}| (E) | id {id}

id ::= a | b | c

Example 2
Grammar of arithmetic expressions extended with

translation into RPN (Reverse Polish Notation)

Lidia Jackowska-Strumiłło, Computer Engineering Department Technical University of Lodz

