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Alphabet & language  

Alphabet  is a finite set of symbols. 
 

String (a word over alphabet) is a finite set 

of symbols from  combined together.  
 

A formal language is a subset of finite 

strings of elements of the finite set which 

is called the alphabet. 
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Examples of languages 

1) Set of palindromes over the alphabet 

lowercase Latin,  = {a, b, c, … , z}  

2) A set of binary numbers without 

insignificant  zeros,  = {0,1}  

3) A set of binary numbers divisible by 3,  

 = {0,1}  

4) The set of prime decimal numbers,  

 = {0,1, 2, 3, 4, 5, 6, 7, 8, 9}  
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Finite-state machine (FSM) 

1 0 1 1 0 0 0 0 

Finite 

control 

Head (read only) 

FSM - an abstract machine with a finite 

number of states, which reads symbols 

written on the tape, and changes its state 

according to the defined transition function 
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Deterministic Finite Automaton (DFA) 

Definition of DFA: 

M = (Q, Σ, δ, q0, F) 

where: 

Q – finite set of states, 

Σ – finite input alphabet, 

δ – transition function mapping from Q x Σ to Q, 

q0 – initial state, q0  Q 

F – set of final states. 
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Transition diagram and table with transition function δ(q,a) 

q0 q1 

q2 q3 

1 

1 

1 

1 

0 

0 
0 

0 

M = (Q, Σ, δ, q0, F) 

Q = {q0, q1, q2, q3},  Σ = {0, 1} 

F = q0 

δ 0 1 

q0 q2 q1 

q1 q3 q0 

q2 q0 q3 

q3 q1 q2 

Strings accepted by this automaton: 11, 00, 1010, 0101, 110101,  

010001, … etc. These are the words belonging to L(M). 

Deterministic Finite Automaton 
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The definition of the language accepted  

by the DAS: 

 

The language accepted by the DAS is a set 

of words over the alphabet Σ, for which the 

machine ends calculations in the accepting 

state. 

Deterministic Finite Automaton 



©  Lidia Jackowska-Strumiłło, Institute of Applied Computer  Science, Lodz University of Technology 

Design a finite state machine - vending 

machine, which gives the product, when 

the sum of the thrown money is equal to  

6 PLN or more. The machine does not 

give change and accepts coins:  

1 PLN, 2 PLN i 5 PLN. 

Example 1 



Example 1 
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Design a deterministic finite automaton 

accepting binary numbers without  

insignificant zeros. 

Example 2 
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The given transition function describes the machine: 

M = ({q0, q1, q2, q3}, {0, 1}, δ, q0, {q1 , q3}) 

 

Example 2 

M = (Q, Σ, δ, q0, F) 

Q = {q0, q1, q2, q3},  Σ = {0, 1} 

F = {q1 , q3} 

δ 0 1 

q0 q1 q3 

q1 q2 q2 

q2 q2 q2 

q3 q3 q3 

Words belonging to L(M):  

0, 1, 101, 11010, … 

q1 q0 q2 
0, 1 

0, 1 

0, 1 

0 

q3 

1 
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Design an algorithm solving the following 

problem: 

1. A man has a wolf, a goat and a lettuce. 

2. He wants to transport everything to the other 

side of a river. 

3. He has a small boat and can take with him 

only two things at once. 

4. He can not leave the sheep with the wolf, 

because the wolf will eat the sheep. 

5. He can not leave the sheep with the lettuce, 

because the sheep will eat the lettuce. 

 

 

Example 



Algorithm implementation 

-MWGL 

M - man 

W – wolf 

G – goat 

L - lettuce  

WL-MG MWL-G 

L-MWG W-MGL 

MWG-L MGL-W 

MG-WL G-MWL 

MWGL- 

G 

G 

G G G G 

G 

G 

M 

M 

M 

M 

L 

L 

L 

L 

W 

W 

W 

W 
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Non-deterministic Finite Automaton (NFA) 

Definition of NFA: 

M = (Q, Σ, δ, q0, F) 

where: 

Q – finite set of states, 

Σ – finite input alphabet, 

δ – transition function mapping:  Q x Σ → 2Q, 

q0 – initial state, q0  Q 

F – set of final states. 
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Design a non-deterministic finite automaton 

that accepts the language consisting of 

words containing a string of three binary 

zeros or three ones. 

Example 3 
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Example 3 

M = (Q, Σ, δ, q0, F) 

Q = {q0, q1, q2, q3, q4, q5 , q6},  

Σ = {0, 1}, F = {q5 , q6} 

δ 0 1 

→ q0 {q0, q1} {q0, q2} 

q1 {q3}  

q2  {q4} 

q3 {q5}  

q4  {q6} 

q5 → {q5} {q5} 

q6 → {q6} {q6} 

Words belonging to L(M):  

000, 111, 10111, 1100010, …  
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Design a finite automata: deterministic and 

non-deterministic accepting binary strings 

ending with three ones. 

Example 4 
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Example 4 

M = (Q, Σ, δ, q0, F) 

Q = {q0, q1, q2, q3},  

Σ = {0, 1}, F = {q3} 

Words belonging to L(M):  

111, 10111, 11010111, …  

q0 q2 
1 1 

q3 
1 

0, 1 

q1 

q0 1 

0 

q0,q1 

0 

NFA 

The project of the equivalent DFA 

 

1) The initial part of the graph 



©  Lidia Jackowska-Strumiłło, Institute of Applied Computer  Science, Lodz University of Technology 

Example 4 

q0 q2 1 

1 

1 
q3 

1 

0 

q1 

0 

0 

0 

2) The equivalent DFA 

DFA 

q0 q0,q2 1 

1 

1 
q0,q3 

1 

0 

q0,q1 

0 

0 

0 

3) DFA after ordering 
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Design a finite state machine, that searches 

for the words „web” and „ebay” in the text. 

 

Example 5 – Text search 



Example 5- Text search 
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An NFA that searches for the words „web” and „ebay” 

NFA 



Conversion of the NFA that searches for the words „web” and „ebay” to a DFA 

 

DFA 
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Equivalence of DFA & NFA 

Theorem 1 

Each deterministic finite automaton is a non-

deterministic finite automaton, ie   

 

Theorem 2 

Let L be the language accepted by the 

nondeterministic finite automaton. Then there 

is a deterministic finite automaton accepting L. 

NFADFA
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NFA with  -moves 

Definition of NFA with -moves (-NFA): 

M = (Q, Σ, δ, q0, F) 

where: 

Q – finite set of states, 

Σ – finite input alphabet, 

δ – transition function mapping: 

Q x (Σ  {}) → 2Q, (where:  -empty word), 

q0 – initial state, q0  Q 

F – set of final states. 
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Design a non-deterministic finite automaton 

that accepts the language consisting of 

words that contain any number of zeros, 

followed by any number of ones, and then 

any number of twos. 

Example 5 



©  Lidia Jackowska-Strumiłło, Institute of Applied Computer  Science, Lodz University of Technology 

Example 5 

M = (Q, Σ, δ, q0, F) 

Q = {q0, q1, q2},  

Σ = {0,1,2}, F = {q2} 

Words belonging to L(M):  

012, 002, 112, 011222, …  

NFA with -moves q0 
 

q2 

0 

q1 

1 

 

2 

δ 0 1 2  

q0 {q0}   {q1} 

q1  {q1}  {q2} 

q2   {q2}  
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Example 5 

The project of the equivalent NFA 

δ 0 1 2 

q0 {q0,q1,q2} {q1,q2} {q2} 

q1  {q1,q2} {q2} 

q2   {q2} 

0,1,2 

q2 

0 1 2 

q1 q0 
1,2 0,1 
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Design a finite automaton that accepts 

decimal numbers consisting of: 

1. An optional + or − sign, 

2. A string of digits, 

3. A decimal point, and 

4. Another string od digits. 

Either this string of digits (4) or the string (2) 

can be empty, but at least one of the two 

strings of digits must be nonempty. 

Example  
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An -NFA accepting decimal numbers.  

Example  
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An NFA accepting decimal numbers.  

Example  
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Equivalence of NFA- and NFA  

Theorem 3 

If the language L is accepted by a non-

deterministic finite automaton with  

-moves, it is also acceptable to the NFA 

without -moves. 



Regular expressions 

A regular expression is an expression that describes 

a set of strings.  

Regular expressions are used by many text editors, 

utilities, and programming languages to search and 

manipulate text based on patterns. 

The origins of regular expressions come from 

automata theory and formal language theory. 

Regular expressions describe regular languages in 

formal language theory. 
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Regular expressions - definition 

Given a finite alphabet Σ, the following regular 

expressions over Σ are defined: 

1. ∅ is regular expression denoting empty set. 

2. ε is regular expression denoting set {ε} (empty 

string). 

3. For each a in Σ, a is regular expression denoting 

set {a} (literal character). 

4. If r and s are regular expressions denoting R 

and S languages respectively, then (r + s), (rs) 

and (r*) are regular expressions denoting sets:  

R  S (set union), RS (concatenation) and  

R* (Kleene star) respectively. 
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Examples 

Given  R = { a, b} 

    S = {c, d } 

then 

R  S = {a, b, c, d }  (set union),  

RS = {ac, ad, bc, bd }  (concatenation)  

R* = {ε, a, b, aa, bb, ab, ba, aaa, aab, aba, …}

 (Kleene star)  
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Regular expressions (RegEx)- notation 
Metacha-

racter 

Description 

. any single character 

[abc]  a single character that is contained within the brackets 

("a", "b" or "c") 

[^abc]  a single character that is not contained within the brackets 

[a-z0-9]  any single character from a given range 

\w any single character, such as letter, digit or underline 

\W any single character, other than letter, digit and underline 

\s any single white character 

\S  any single character other than white one 

\d  any digit 

\D  any single character other than digit  
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Metacha-

racter 

Description 

^ matches the starting position within the string 

$ matches the ending position of the string  

* repeats the previous item zero or more times 

+ repeats the previous item once or more 

? makes the preceding item optional 

{n} repeats the previous item exactly n times 

{n,} repeats the previous item at least n times 

{n,m} repeats the previous item between n and m times 

| alternate 

( ) grouping 

\ a backslash escapes special characters to suppress their 

special meaning 

. $ ^ { [ ( | 

) ] } * + ? \ 

special characters  
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Examples 

Post code checking:  ^\d{2}-\d{3}$ 

 

www adress checking:     ^www\.[-\w]+(\.[-\w]+)+$ 

 

IP adress checking: 

 ^0*(25[0-5]|2[0-4]\d|1?\d\d?) 

(\.0*(25[0-5]|2[0-4]\d|1?\d\d?)){3}$ 

©  Lidia Jackowska-Strumiłło, Institute of Applied Computer  Science, Lodz University of Technology 



©  Lidia Jackowska-Strumiłło, Institute of Applied Computer  Science, Lodz University of Technology 

Equivalence of regular expressions and 

finate automata 

1. Every language L accepted by a finite 

automaton is also defined by regular 

expression. 

2. Every language L defined by regular 

expression is also defined by a finite 

automaton. 



Equivalence of regular expressions and 

finate automata 

Different notations of regular languages. 



Converting regular grammar into  

regular expression 

Grammar defining e-mail adress: 

 

S::= A@A.W 

A::= W{.W} 

W::= L{L} 

L ::= a | b | c | d | e | … | x | y | z 

 

Grammar after reduction: 

S::= L{L}{. L{L}} @ L{L}{. L{L}}. L{L} 

L ::= a | b | c | d | e | … | x | y | z 
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Converting regular grammar into  

regular expression 

Grammar defining e-mail adress: 

 

S::=(a|b|c|…|z){(a|b|c|…|z)}{.(a|b|c|…|z){(a|b|c|…|z)}} 

@(a|b|c|…|z){(a|b|c|…|z)}{.(a|b|c|…|z){(a|b|c|…|z)}} 

.(a|b|c|…|z){(a|b|c|…|z)} 

 

Regular expression defining e-mail adress: 

 

^[a-z]+(\.[a-z]+)*@[a-z]+(\.[a-z]+)*\.[a-z]+$ 
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Turing Machine  

 Turing Machine is a very simple abstractive 

mathematical model of a computer. 

 

Alan Turing 
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Basic components: 

 Infinite tape – memory 

 Moving head – input/output system 

 Control unit – processor 

Turing Machine  

Moving 

head 
Infinite tape 

Control  

unit 
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Turing Machine  

http://gadzetomania.pl/2010/03/27/wykonana-metoda-chalupnicza-maszyna-turinga-wideo 

Model of the Turing machine built by Mike Davey 
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Turing Machine  

Model of the Turing machine built by Mike Davey 

http://gadzetomania.pl/2010/03/27/wykonana-metoda-chalupnicza-maszyna-turinga-wideo 
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Turing Machine – basic model 

Definition of Turing Machine: 

M = (Q, Σ, G, δ, q0, Q, F) 
where: 

Q – finite set of states, 

Σ – finite input alphabet, set of input symbols, 

G – tape alphabet – finite set of valid tape symbols, 

 

Q – empty symbol belonging to G, 

δ – transition function, δ:      , 

 where L and R symbols meaning the head movement 
direction: left or right. 

q0 – initial state, which belongs to Q 

F – set of final states. 

}{QG

},{ RLQQ GG
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Turing Machine – program example 

Negation of binary value – data processing 

δ 0 1 Θ 

q0 q0 ,1, R q0, 0, R q1, -, - 

q1 q1, -, - q1, -, - q1, -, - 

Start 

 1 

 0 

Write 0, move right and 

f

Write 0, move right and 

fetch the next symbol 

Write 1 move right and 

f

Write 1, move right and 

fetch the next symbol 

Θ Θ 

End 

Y 

Y 

Y 

N 

N 

q0 

q0 

q0 

q1 

q0 q1 

1/0, R 

0/1, R 

Θ 

Σ = {0,1}, G = {0,1,Θ}, Q = {q0,q1}, F = {q1} 



q1 

q2 

q3 

q5 

q4 

q4 

q4 

Y 

Y 

Y 

Fetch the  

next symbol 

Fetch the  

next symbol 

Correct 

Incorrect 

Incorrect 

Incorrect 

START 

‘a’ 

‘b’ 

‘c’ 

N 

N 

N 

Turing Machine – example 2 

Recognition of word "abc" 

in a set of three-letters strings. 
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Q = {q1, q2, q3, q4, q5},  

Σ = {a,b,c},  

F = {q4, q5}, where A = {q5}, R = {q4},  



q1 q2 q3 q5 

q4 

Σ\b /-,- Accept 

Reject 

a/-, R 

Turing Machine – example 2 

Recognition of word "abc„ in a set of three-letters strings  

- decission. 
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b/-, R c/-, R 

Q = {q1, q2, q3, q4, q5},  

Σ = {a,b,c},  

F = {q4, q5}, where A = {q5}, R = {q4},  

Σ\c /-,- Σ\a /-,- 

Final result – decision: 

A – accept 

R – reject 

 



Turing Machine – example 2 

where: R – move the head right and fetch the next symbol, 

  q4 – rejecting state, q5 – accepting state.  

δ a b c 

q1 q2 , -, R q4 , -, - q4 , -, - 

q2 q4 , -, - q3 , -, R q4 , -, - 

q3 q4 , -, - q4 , -, - q5 , -, - 

q4 q4 , -, - q4 , -, - q4 , -, - 

q5 q5 , -, - q5 , -, - q5 , -, - 
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Turing Machine – example 3 

Incrementing a number 

by 1 - calculations 

 
START 

9 

Instead of 9 
 write 0, move the 

head left  

write 1 

Q 

END 

3 

2 

Instead of digits 
0, ..., 8 write 

digits 1, ..., 9 

END 

3 

1 

Y N 

N Y 

q1 

q2 

q3 

q3 

START 

END 

END 
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q1 

q2 

q3 

9/0, L 

Q/1,- 

Σ/-,- 

0…8/1…9,- 

Q = {q1, q2, q3}, Σ = {0,1,2,3,4,5,6,7,8,9}, F = {q3} 



Turing Machine – example 3 

Machine State q1 q2 q1 q3 

Tape State 89 

_ 

80 

_ 

80 

_ 

90 

_ 

δ 9 Q 0 1 … 8 

q1 q2,0, L - q3,1,- q3,2,- … q3,9,- 

q2 q1,-,- q3,1,- q1 ,-,- q1 ,-,- … q1 ,-,- 

q3 q3 ,-,- q3 ,-,- q3 ,-,- q3 ,-,- … q3 ,-,- 
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Q = {q1, q2, q3}, Σ = {0,1,2,3,4,5,6,7,8,9}, F = {q3} 
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Pushdown automaton (PDA) 

Pushdown automaton is a finite automaton 

equipped additionally with a stack control. 

PDA is a subclass of Turing machines. 

stack 

a1 a4 an … 

Finite  

control 

a2 a3 

… 

Z1 

Z2 

Z3 

Input tape 
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Pushdown automaton (PDA) 

Definition of PDA: 

M = (Q, Σ, G, δ, q0, Z0, F) 
where: 

Q – finite set of states 

Σ – finite input alphabet, set of input symbols 

G – stack alphabet – finite set of valid stack symbols 

Z0– initial symbol belonging to G 

q0 – initial state, which belongs to Q 

F – set of final states 

δ – transition function, δ: 

  Q x (Σ  {}) x G  → Q x G*  

 and G* denotes the set of strings over alphabet G 

   



RPN – Reverse Polish Notation 

Conventional infix 

notation 

Postfix notation 

(RPN) 

x+y 

 

xy+ 

(xy)+z 

 

xyz+ 

 

x (y+z) 

 

xyz+ 

 

x*(y+z)*w xyz+*w*  

 

Jan Łukasiewicz 
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Fetch the symbol 

from left to right 

Stack 

END 

Y 

Y 

Y 

ERROR 

Pop the arguments 
from the stack, execute 
the operation, push the 
result to the stack 

START 

argument 

Θ 

operator 

RPN – Reverse Polish Notation 

Calculating expression value 

given in RPN using a stack 

machine 
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RPN – Reverse Polish Notation - example 

Calculating expression value given in RPN 

3   5 * 1 + 2 / Input Stack Output 

3 3 

5 3  5 

* 15 

1 15  1 

+ 16 

2 16  2 

/ 8 

Θ 8 
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RPN  

Conversion of an 

expression from 

conventional to RPN 

notation using a stack 

machine 

Y 

Y 

Y 

Y 

Y Y 

Read from left 

to right 

Output 

Stack 

Stack 

Stack to output 

Stack content  till 

‘(‘ or to the output 

Stack content to the 

output till ‘(‘ or to the 

bottom, then the 

operator to the stack 

START 

argument 

( 

operator 

) 

Θ 

N 

N 

N 

N 

N 

N 

END ERROR 

Is higher at 

the stack till ‘(‘ or to 

the bottom? 
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RPN – Reverse Polish Notation - example  

(3*5+1)/2 

Conversion of an expression from conventional to RPN notation 

 Input Stack Output 

( ( 

3 ( 3 

* (* 

5 (* 5 

+ (+ * 

1 (+ 1 

) + 

/ / 

2 / 2 

Θ / 3   5 * 1 + 2 / 
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