
Mathematical Linguistics
Theory of automata

© dr hab. inż. Lidia Jackowska-Strumiłło, prof. PŁ

Institute of Applied Computer Science

Lodz University of Technology

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Alphabet & language

Alphabet  is a finite set of symbols.

String (a word over alphabet) is a finite set

of symbols from  combined together.

A formal language is a subset of finite

strings of elements of the finite set which

is called the alphabet.

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Examples of languages

1) Set of palindromes over the alphabet

lowercase Latin,  = {a, b, c, … , z}

2) A set of binary numbers without

insignificant zeros,  = {0,1}

3) A set of binary numbers divisible by 3,

 = {0,1}

4) The set of prime decimal numbers,

 = {0,1, 2, 3, 4, 5, 6, 7, 8, 9}

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Finite-state machine (FSM)

1 0 1 1 0 0 0 0

Finite

control

Head (read only)

FSM - an abstract machine with a finite

number of states, which reads symbols

written on the tape, and changes its state

according to the defined transition function

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Deterministic Finite Automaton (DFA)

Definition of DFA:

M = (Q, Σ, δ, q0, F)

where:

Q – finite set of states,

Σ – finite input alphabet,

δ – transition function mapping from Q x Σ to Q,

q0 – initial state, q0  Q

F – set of final states.

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Transition diagram and table with transition function δ(q,a)

q0 q1

q2 q3

1

1

1

1

0

0
0

0

M = (Q, Σ, δ, q0, F)

Q = {q0, q1, q2, q3}, Σ = {0, 1}

F = q0

δ 0 1

q0 q2 q1

q1 q3 q0

q2 q0 q3

q3 q1 q2

Strings accepted by this automaton: 11, 00, 1010, 0101, 110101,

010001, … etc. These are the words belonging to L(M).

Deterministic Finite Automaton

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

The definition of the language accepted

by the DAS:

The language accepted by the DAS is a set

of words over the alphabet Σ, for which the

machine ends calculations in the accepting

state.

Deterministic Finite Automaton

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Design a finite state machine - vending

machine, which gives the product, when

the sum of the thrown money is equal to

6 PLN or more. The machine does not

give change and accepts coins:

1 PLN, 2 PLN i 5 PLN.

Example 1

Example 1

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Design a deterministic finite automaton

accepting binary numbers without

insignificant zeros.

Example 2

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

The given transition function describes the machine:

M = ({q0, q1, q2, q3}, {0, 1}, δ, q0, {q1 , q3})

Example 2

M = (Q, Σ, δ, q0, F)

Q = {q0, q1, q2, q3}, Σ = {0, 1}

F = {q1 , q3}

δ 0 1

q0 q1 q3

q1 q2 q2

q2 q2 q2

q3 q3 q3

Words belonging to L(M):

0, 1, 101, 11010, …

q1 q0 q2
0, 1

0, 1

0, 1

0

q3

1

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Design an algorithm solving the following

problem:

1. A man has a wolf, a goat and a lettuce.

2. He wants to transport everything to the other

side of a river.

3. He has a small boat and can take with him

only two things at once.

4. He can not leave the sheep with the wolf,

because the wolf will eat the sheep.

5. He can not leave the sheep with the lettuce,

because the sheep will eat the lettuce.

Example

Algorithm implementation

-MWGL

M - man

W – wolf

G – goat

L - lettuce

WL-MG MWL-G

L-MWG W-MGL

MWG-L MGL-W

MG-WL G-MWL

MWGL-

G

G

G G G G

G

G

M

M

M

M

L

L

L

L

W

W

W

W

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Non-deterministic Finite Automaton (NFA)

Definition of NFA:

M = (Q, Σ, δ, q0, F)

where:

Q – finite set of states,

Σ – finite input alphabet,

δ – transition function mapping: Q x Σ → 2Q,

q0 – initial state, q0  Q

F – set of final states.

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Design a non-deterministic finite automaton

that accepts the language consisting of

words containing a string of three binary

zeros or three ones.

Example 3

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Example 3

M = (Q, Σ, δ, q0, F)

Q = {q0, q1, q2, q3, q4, q5 , q6},

Σ = {0, 1}, F = {q5 , q6}

δ 0 1

→ q0 {q0, q1} {q0, q2}

q1 {q3} 

q2  {q4}

q3 {q5} 

q4  {q6}

q5 → {q5} {q5}

q6 → {q6} {q6}

Words belonging to L(M):

000, 111, 10111, 1100010, …

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Design a finite automata: deterministic and

non-deterministic accepting binary strings

ending with three ones.

Example 4

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Example 4

M = (Q, Σ, δ, q0, F)

Q = {q0, q1, q2, q3},

Σ = {0, 1}, F = {q3}

Words belonging to L(M):

111, 10111, 11010111, …

q0 q2
1 1

q3
1

0, 1

q1

q0 1

0

q0,q1

0

NFA

The project of the equivalent DFA

1) The initial part of the graph

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Example 4

q0 q2 1

1

1
q3

1

0

q1

0

0

0

2) The equivalent DFA

DFA

q0 q0,q2 1

1

1
q0,q3

1

0

q0,q1

0

0

0

3) DFA after ordering

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Design a finite state machine, that searches

for the words „web” and „ebay” in the text.

Example 5 – Text search

Example 5- Text search

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

An NFA that searches for the words „web” and „ebay”

NFA

Conversion of the NFA that searches for the words „web” and „ebay” to a DFA

DFA

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Equivalence of DFA & NFA

Theorem 1

Each deterministic finite automaton is a non-

deterministic finite automaton, ie

Theorem 2

Let L be the language accepted by the

nondeterministic finite automaton. Then there

is a deterministic finite automaton accepting L.

NFADFA

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

NFA with -moves

Definition of NFA with -moves (-NFA):

M = (Q, Σ, δ, q0, F)

where:

Q – finite set of states,

Σ – finite input alphabet,

δ – transition function mapping:

Q x (Σ  {}) → 2Q, (where:  -empty word),

q0 – initial state, q0  Q

F – set of final states.

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Design a non-deterministic finite automaton

that accepts the language consisting of

words that contain any number of zeros,

followed by any number of ones, and then

any number of twos.

Example 5

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Example 5

M = (Q, Σ, δ, q0, F)

Q = {q0, q1, q2},

Σ = {0,1,2}, F = {q2}

Words belonging to L(M):

012, 002, 112, 011222, …

NFA with -moves q0


q2

0

q1

1



2

δ 0 1 2 

q0 {q0}   {q1}

q1  {q1}  {q2}

q2   {q2} 

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Example 5

The project of the equivalent NFA

δ 0 1 2

q0 {q0,q1,q2} {q1,q2} {q2}

q1  {q1,q2} {q2}

q2   {q2}

0,1,2

q2

0 1 2

q1 q0
1,2 0,1

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Design a finite automaton that accepts

decimal numbers consisting of:

1. An optional + or − sign,

2. A string of digits,

3. A decimal point, and

4. Another string od digits.

Either this string of digits (4) or the string (2)

can be empty, but at least one of the two

strings of digits must be nonempty.

Example

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

An -NFA accepting decimal numbers.

Example

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

An NFA accepting decimal numbers.

Example

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Equivalence of NFA- and NFA

Theorem 3

If the language L is accepted by a non-

deterministic finite automaton with

-moves, it is also acceptable to the NFA

without -moves.

Regular expressions

A regular expression is an expression that describes

a set of strings.

Regular expressions are used by many text editors,

utilities, and programming languages to search and

manipulate text based on patterns.

The origins of regular expressions come from

automata theory and formal language theory.

Regular expressions describe regular languages in

formal language theory.

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Regular expressions - definition

Given a finite alphabet Σ, the following regular

expressions over Σ are defined:

1. ∅ is regular expression denoting empty set.

2. ε is regular expression denoting set {ε} (empty

string).

3. For each a in Σ, a is regular expression denoting

set {a} (literal character).

4. If r and s are regular expressions denoting R

and S languages respectively, then (r + s), (rs)

and (r*) are regular expressions denoting sets:

R  S (set union), RS (concatenation) and

R* (Kleene star) respectively.
© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Examples

Given R = { a, b}

 S = {c, d }

then

R  S = {a, b, c, d } (set union),

RS = {ac, ad, bc, bd } (concatenation)

R* = {ε, a, b, aa, bb, ab, ba, aaa, aab, aba, …}

 (Kleene star)

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Regular expressions (RegEx)- notation
Metacha-

racter

Description

. any single character

[abc] a single character that is contained within the brackets

("a", "b" or "c")

[^abc] a single character that is not contained within the brackets

[a-z0-9] any single character from a given range

\w any single character, such as letter, digit or underline

\W any single character, other than letter, digit and underline

\s any single white character

\S any single character other than white one

\d any digit

\D any single character other than digit

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Metacha-

racter

Description

^ matches the starting position within the string

$ matches the ending position of the string

* repeats the previous item zero or more times

+ repeats the previous item once or more

? makes the preceding item optional

{n} repeats the previous item exactly n times

{n,} repeats the previous item at least n times

{n,m} repeats the previous item between n and m times

| alternate

() grouping

\ a backslash escapes special characters to suppress their

special meaning

. $ ^ { [(|

)] } * + ? \

special characters

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Examples

Post code checking: ^\d{2}-\d{3}$

www adress checking: ^www\.[-\w]+(\.[-\w]+)+$

IP adress checking:

 ^0*(25[0-5]|2[0-4]\d|1?\d\d?)

(\.0*(25[0-5]|2[0-4]\d|1?\d\d?)){3}$

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Equivalence of regular expressions and

finate automata

1. Every language L accepted by a finite

automaton is also defined by regular

expression.

2. Every language L defined by regular

expression is also defined by a finite

automaton.

Equivalence of regular expressions and

finate automata

Different notations of regular languages.

Converting regular grammar into

regular expression

Grammar defining e-mail adress:

S::= A@A.W

A::= W{.W}

W::= L{L}

L ::= a | b | c | d | e | … | x | y | z

Grammar after reduction:

S::= L{L}{. L{L}} @ L{L}{. L{L}}. L{L}

L ::= a | b | c | d | e | … | x | y | z

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Converting regular grammar into

regular expression

Grammar defining e-mail adress:

S::=(a|b|c|…|z){(a|b|c|…|z)}{.(a|b|c|…|z){(a|b|c|…|z)}}

@(a|b|c|…|z){(a|b|c|…|z)}{.(a|b|c|…|z){(a|b|c|…|z)}}

.(a|b|c|…|z){(a|b|c|…|z)}

Regular expression defining e-mail adress:

^[a-z]+(\.[a-z]+)*@[a-z]+(\.[a-z]+)*\.[a-z]+$

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Turing Machine

 Turing Machine is a very simple abstractive

mathematical model of a computer.

Alan Turing

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Basic components:

 Infinite tape – memory

 Moving head – input/output system

 Control unit – processor

Turing Machine

Moving

head
Infinite tape

Control

unit

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Turing Machine

http://gadzetomania.pl/2010/03/27/wykonana-metoda-chalupnicza-maszyna-turinga-wideo

Model of the Turing machine built by Mike Davey

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Turing Machine

Model of the Turing machine built by Mike Davey

http://gadzetomania.pl/2010/03/27/wykonana-metoda-chalupnicza-maszyna-turinga-wideo

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Turing Machine – basic model

Definition of Turing Machine:

M = (Q, Σ, G, δ, q0, Q, F)
where:

Q – finite set of states,

Σ – finite input alphabet, set of input symbols,

G – tape alphabet – finite set of valid tape symbols,

Q – empty symbol belonging to G,

δ – transition function, δ: ,

 where L and R symbols meaning the head movement
direction: left or right.

q0 – initial state, which belongs to Q

F – set of final states.

}{QG

},{ RLQQ GG

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Turing Machine – program example

Negation of binary value – data processing

δ 0 1 Θ

q0 q0 ,1, R q0, 0, R q1, -, -

q1 q1, -, - q1, -, - q1, -, -

Start

 1

 0

Write 0, move right and

f

Write 0, move right and

fetch the next symbol

Write 1 move right and

f

Write 1, move right and

fetch the next symbol

Θ Θ

End

Y

Y

Y

N

N

q0

q0

q0

q1

q0 q1

1/0, R

0/1, R

Θ

Σ = {0,1}, G = {0,1,Θ}, Q = {q0,q1}, F = {q1}

q1

q2

q3

q5

q4

q4

q4

Y

Y

Y

Fetch the

next symbol

Fetch the

next symbol

Correct

Incorrect

Incorrect

Incorrect

START

‘a’

‘b’

‘c’

N

N

N

Turing Machine – example 2

Recognition of word "abc"

in a set of three-letters strings.

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Q = {q1, q2, q3, q4, q5},

Σ = {a,b,c},

F = {q4, q5}, where A = {q5}, R = {q4},

q1 q2 q3 q5

q4

Σ\b /-,- Accept

Reject

a/-, R

Turing Machine – example 2

Recognition of word "abc„ in a set of three-letters strings

- decission.

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

b/-, R c/-, R

Q = {q1, q2, q3, q4, q5},

Σ = {a,b,c},

F = {q4, q5}, where A = {q5}, R = {q4},

Σ\c /-,- Σ\a /-,-

Final result – decision:

A – accept

R – reject

Turing Machine – example 2

where: R – move the head right and fetch the next symbol,

 q4 – rejecting state, q5 – accepting state.

δ a b c

q1 q2 , -, R q4 , -, - q4 , -, -

q2 q4 , -, - q3 , -, R q4 , -, -

q3 q4 , -, - q4 , -, - q5 , -, -

q4 q4 , -, - q4 , -, - q4 , -, -

q5 q5 , -, - q5 , -, - q5 , -, -

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Turing Machine – example 3

Incrementing a number

by 1 - calculations

START

9

Instead of 9
 write 0, move the

head left

write 1

Q

END

3

2

Instead of digits
0, ..., 8 write

digits 1, ..., 9

END

3

1

Y N

N Y

q1

q2

q3

q3

START

END

END

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

q1

q2

q3

9/0, L

Q/1,-

Σ/-,-

0…8/1…9,-

Q = {q1, q2, q3}, Σ = {0,1,2,3,4,5,6,7,8,9}, F = {q3}

Turing Machine – example 3

Machine State q1 q2 q1 q3

Tape State 89

_

80

_

80

_

90

_

δ 9 Q 0 1 … 8

q1 q2,0, L - q3,1,- q3,2,- … q3,9,-

q2 q1,-,- q3,1,- q1 ,-,- q1 ,-,- … q1 ,-,-

q3 q3 ,-,- q3 ,-,- q3 ,-,- q3 ,-,- … q3 ,-,-

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Q = {q1, q2, q3}, Σ = {0,1,2,3,4,5,6,7,8,9}, F = {q3}

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Pushdown automaton (PDA)

Pushdown automaton is a finite automaton

equipped additionally with a stack control.

PDA is a subclass of Turing machines.

stack

a1 a4 an …

Finite

control

a2 a3

…

Z1

Z2

Z3

Input tape

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Pushdown automaton (PDA)

Definition of PDA:

M = (Q, Σ, G, δ, q0, Z0, F)
where:

Q – finite set of states

Σ – finite input alphabet, set of input symbols

G – stack alphabet – finite set of valid stack symbols

Z0– initial symbol belonging to G

q0 – initial state, which belongs to Q

F – set of final states

δ – transition function, δ:

 Q x (Σ  {}) x G → Q x G*

 and G* denotes the set of strings over alphabet G

RPN – Reverse Polish Notation

Conventional infix

notation

Postfix notation

(RPN)

x+y

xy+

(xy)+z

xyz+

x (y+z)

xyz+

x*(y+z)*w xyz+*w*

Jan Łukasiewicz

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Fetch the symbol

from left to right

Stack

END

Y

Y

Y

ERROR

Pop the arguments
from the stack, execute
the operation, push the
result to the stack

START

argument

Θ

operator

RPN – Reverse Polish Notation

Calculating expression value

given in RPN using a stack

machine

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

RPN – Reverse Polish Notation - example

Calculating expression value given in RPN

3 5 * 1 + 2 / Input Stack Output

3 3

5 3 5

* 15

1 15 1

+ 16

2 16 2

/ 8

Θ 8

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

© Lidia Jackowska-Strumiłło, TUL

RPN

Conversion of an

expression from

conventional to RPN

notation using a stack

machine

Y

Y

Y

Y

Y Y

Read from left

to right

Output

Stack

Stack

Stack to output

Stack content till

‘(‘ or to the output

Stack content to the

output till ‘(‘ or to the

bottom, then the

operator to the stack

START

argument

(

operator

)

Θ

N

N

N

N

N

N

END ERROR

Is higher at

the stack till ‘(‘ or to

the bottom?

© Lidia Jackowska-Strumiłło, TUL

RPN – Reverse Polish Notation - example

(3*5+1)/2

Conversion of an expression from conventional to RPN notation

 Input Stack Output

((

3 (3

* (*

5 (* 5

+ (+ *

1 (+ 1

) +

/ /

2 / 2

Θ / 3 5 * 1 + 2 /

© Lidia Jackowska-Strumiłło, Institute of Applied Computer Science, Lodz University of Technology

Literatura

1. Hopcroft J.E., Ullman J.D.: Wprowadzenie do

teorii automatów, języków i obliczeń. PWN,

Warszawa, 2003.

2. Homenda W.: Elementy lingwistyki

matematycznej i teorii automatów. Oficyna

Wydawnicza Politechniki Warszawskiej, W-wa

2005.

3. Krasiński T.: Automaty i języki formalne.

Uniwersytet Łódzki, Łódź, 2005.

