Introduction to Computer Science 2010/2011

Laboratory 1

Batch File Commands

A batch file is an unformatted text file that contains one or more commands and has a .bat or .cmd file name extension. When you type the file name at the command prompt, Cmd.exe runs the commands sequentially as they appear in the file. With batch files, which are also called batch programs or scripts, you can simplify routine or repetitive tasks.

You can include any command in a batch file. Certain commands, such as for, goto, and if, enable you to do conditional processing of the commands in the batch file. For example, the if command carries out a command based on the results of a condition. Other commands allow you to control input and output and call other batch files.

The standard error codes that most applications return are 0 if no error occurred and 1 (or higher value) if an error occurred.

1. Data redirections

You can use redirection operators to redirect command input and output streams from the default locations to different locations. The input or output stream location is referred to as a handle.

The following table lists operators that you can use to redirect command input and output streams.

	Redirection operator
	Description

	>
	Writes the command output to a file or a device, such as a printer, instead of the Command Prompt window.

	<
	Reads the command input from a file, instead of reading input from the keyboard.

	>>
	Appends the command output to the end of a file without deleting the information that is already in the file.

	>&
	Writes the output from one handle to the input of another handle.

	<&
	Reads the input from one handle and writes it to the output of another handle.

	|
	Reads the output from one command and writes it to the input of another command. Also known as a pipe.

By default, you send the command input (that is, the STDIN handle) from your keyboard to Cmd.exe, and then Cmd.exe sends the command output (that is, the STDOUT handle) to the Command Prompt window.

The following table lists the available handles.

	Handle
	Numeric equivalent of handle
	Description

	STDIN
	0
	Keyboard input

	STDOUT
	1
	Output to the Command Prompt window

	STDERR
	2
	Error output to the Command Prompt window

	UNDEFINED
	3-9
	These handles are defined individually by the application and are specific to each tool.

Examples:

‘>’ – redirect data, e.g example.bat > file.txt – redirects output data from .bat file to file.txt

‘>>’ – add data to existed object, e.g example2.bat > file.txt – adds output data from .bat file to file.txt

‘2>’ – redirect errorlevel output data to object, e.g example.bat > error.txt – sends all error results of .bat file execution to error.txt

‘2>>’ – add errorlevel output data to existed object

‘<’ – send the source data into command input, e.g [command] < file.txt – opens the file.txt with application called by [command]

To sort content of the file.txt and puts the result inside the sorted.txt file use the following command: sort < file.txt > sorted.txt

The numbers zero through nine (that is, 0-9) represent the first 10 handles. You can use Cmd.exe to run a program and redirect any of the first 10 handles for the program. To specify which handle you want to use, type the number of the handle before the redirection operator. If you do not define a handle, the default < redirection input operator is zero (0) and the default > redirection output operator is one (1). After you type the < or > operator, you must specify where you want to read or write the data. You can specify a file name or another existing handle.

To specify redirection to existing handles, use the ampersand (&) character followed by the handle number that you want to redirect (that is, &handle#). For example, the following command redirects handle 2 (that is, STDERR) into handle 1 (that is, STDOUT): 1<&2

 Note

	•
	One is the default handle for the > redirection output operator.

	•
	Zero is the default handle for the < redirection input operator.

2. Stream processing

Used in conjunction with the command redirection pipe character (|), a command filter is a command within a command that reads the command's input, transforms the input, and then writes the output. Filter commands help you sort, view, and select parts of a command output.

Filter commands divide, rearrange, or extract portions of the information that passes through them. The following table lists filter commands that are available in Windows.

	Command
	Description

	more
	Displays the contents of a file or the output of a command in one Command Prompt window at a time.

	find
	Searches through files and command output for the characters you specify.

	sort
	Alphabetizes files and command output.

To send input from a file to a filter command, use a less than sign (<). If you want the filter command to get input from another command, use a pipe (|).

The more command displays the contents of a file or the output of a command in one Command Prompt window at a time. For example, to display the contents of a file called List.txt in one Command Prompt window at a time, type:

more < list.txt

One Command Prompt window of information appears, and then the -- More -- prompt appears at the bottom of the Command Prompt window. To continue to the next Command Prompt window, press any key on the keyboard except PAUSE. To stop the command without viewing more information, press CTRL+C.

You can use the more command when you work with a command that produces more than one Command Prompt window of output. For example, suppose you want to view a directory tree on your hard disk. If you have more directories than can be displayed in the Command Prompt window, you can use the tree command with a pipe (|) and the more command as follows:

tree c:\ | more

The first Command Prompt window of output from the tree command appears, followed by the -- More -- prompt. Output pauses until you press any key on the keyboard, except PAUSE.

The find command searches files for the string or text that you specify. Cmd.exe displays every line that matches the string or text that you specify in the Command Prompt window. You can use the find command either as a filter command or a standard Windows XP command. For more information about using find as a standard command, see Find

To use find as a filter command, you must include a less than sign (<) and the string or text on which you want to search. By default, find searches are case-sensitive. For example, the following command finds occurrences of the string "Pacific Rim" in the file Trade.txt:

find "Pacific Rim" < trade.txt

The output does not include any occurrences of "pacific rim." It includes occurrences of the capitalized "Pacific Rim" only.

To save the output of the find command rather than display it in the Command Prompt window, type a greater than sign (>) and the name of the file where you want to store the output. For example, the following command finds occurrences of "Pacific Rim" in the Trade.txt file and saves them in Nwtrade.txt:

find "Pacific Rim" < trade.txt > nwtrade.txt

The sort command alphabetizes a text file or the output of a command. For example, the following command sorts the contents of a file named List.txt and displays the results in the Command Prompt window:

sort < list.txt

In this example, the sort command sorts the lines of the List.txt file into an alphabetical list and displays the results without changing the file. To save the output of the sort command rather than display it, type a greater than sign (>) and a file name. For example, the following command alphabetizes the lines of the List.txt file and stores the results in the Alphlist.txt file:

sort < list.txt > alphlist.txt

To sort the output of a command, type the command, type a pipe (|), and then type sort (that is, command | sort). For example, the following command sorts the lines that include the string "Jones" (that is, the find command output) in alphabetical order:

find "Jones" maillst.txt | sort

Using batch parameters

You can use batch parameters anywhere within a batch file to extract information about your environment settings.

Cmd.exe provides the batch parameter expansion variables %0 through %9. When you use batch parameters in a batch file, %0 is replaced by the batch file name, and %1 through %9 are replaced by the corresponding arguments that you type at the command line. To access arguments beyond %9, you need to use the shift command. For more information about the shift command, see Shift The %* batch parameter is a wildcard reference to all the arguments, not including %0, that are passed to the batch file.

For example, to copy the contents from Folder1 to Folder2, where %1 is replaced by the value Folder1 and %2 is replaced by the value Folder2, type the following in a batch file called Mybatch.bat:

xcopy %1*.* %2

To run the file, type:

mybatch.bat C:\folder1 D:\folder2

This has the same effect as typing the following in the batch file:

xcopy C:\folder1 *.* D:\folder2

You can also use modifiers with batch parameters. Modifiers use current drive and directory information to expand the batch parameter as a partial or complete file or directory name. To use a modifier, type the percent (%) character followed by a tilde (~) character, and then type the appropriate modifier (that is, %~modifier).

The following table lists the modifiers you can use in expansion.

	Modifier
	Description

	%~1
	Expands %1 and removes any surrounding quotation marks ("").

	%~f1
	Expands %1 to a fully qualified path name.

	%~d1
	Expands %1 to a drive letter.

	%~p1
	Expands %1 to a path.

	%~n1
	Expands %1 to a file name.

	%~x1
	Expands %1 to a file extension.

	%~s1
	Expanded path contains short names only.

	%~a1
	Expands %1 to file attributes.

	%~t1
	Expands %1 to date and time of file.

	%~z1
	Expands %1 to size of file.

	%~$PATH:1
	Searches the directories listed in the PATH environment variable and expands %1 to the fully qualified name of the first one found. If the environment variable name is not defined or the file is not found, this modifier expands to the empty string.

The following table lists possible combinations of modifiers and qualifiers that you can use to get compound results.

	Modifier
	Description

	%~dp1
	Expands %1 to a drive letter and path.

	%~nx1
	Expands %1 to a file name and extension.

	%~dp$PATH:1
	Searches the directories listed in the PATH environment variable for %1 and expands to the drive letter and path of the first one found.

	%~ftza1
	Expands %1 to a dir-like output line.

Note

	•
	In the previous examples, you can replace %1 and PATH with other batch parameter values.

The %* modifier is a unique modifier that represents all arguments passed in a batch file. You cannot use this modifier in combination with the %~ modifier. The %~ syntax must be terminated by a valid argument value.

You cannot manipulate batch parameters in the same manner that you can manipulate environment variables. You cannot search and replace values or examine substrings. However, you can assign the parameter to an environment variable, and then manipulate the environment variable.

3. Environmental paths

%username% - contain the username of current Windows user

%homedrive% - return the driveletter of current user homepath

%homepath% - return the path to the current user dir

%processor_architecture% - return the keyword of current processor architecture (x86/alpha)

%processor_level% - return the processor level

%errorlevel% - contain the state of last finished command; 0 – ends without errors, 1 – error

4. Arguments

The console scripts can be evoke with specified arguments. Inside the body of script arguments are presented as ‘%n’, where ‘n’ is the number of argument, e.g

script.bat a b c

where script.bat is the body of the script and arguments a, b, c will be processing inside of script body as %1, %2, %3.

If we put the command ‘echo %1’ inside script.bat, after runtime following: ‘script.bat TeSt’ as a result we get string TeSt.

5. Variables

Inside the script body we can define variables, which can be easy reuse anytime inside the script code. For creating variable we can use command ‘set’. If we use the command without any argument it return all defined Windows environment defined variables.

To create new variable we can use following command ‘set var = value’, e.g set var1 = 10, set var2 = Smith. To call the variable we use the variable label with ‘%’ on the begin and end of label, e.g echo %var1%, echo %var2%. Two new switches have been added to the SET command:

SET /A expression

 e.g set /A var3 = %var1% + 1

SET /P variable=[promptString]

The /A switch specifies that the string to the right of the equal sign is a numerical expression that is evaluated. If you use any of the logical or modulus operators, you will need to enclose the expression string in quotes. Any non-numeric strings in the expression are treated as environment variable names whose values are converted to numbers before using them. If an environment variable name is specified but is not defined in the current environment, then a value of zero is used. This allows you to do arithmetic with environment variable values without having to type all those % signs to get their values. If SET /A is executed from the command line outside of a command script, then it displays the final value of the expression. The assignment operator requires an environment variable name to the left of the assignment operator. Numeric values are decimal numbers, unless prefixed by 0x for hexadecimal numbers, and 0 for octal numbers.

The /P switch allows you to set the value of a variable to a line of input entered by the user. Displays the specified promptString before reading the line of input. The promptString can be empty.

In the below example a user would be prompted to enter an option of 1,2, or 3 to print hello, bye, or test.

@ECHO off
cls
:start
ECHO.
ECHO 1. Print Hello
ECHO 2. Print Bye
ECHO 3. Print Test
set choice=
set /p choice=Type the number to print text.
if not '%choice%'=='' set choice=%choice:~0,1%
if '%choice%'=='1' goto hello
if '%choice%'=='2' goto bye
if '%choice%'=='3' goto test
ECHO "%choice%" is not valid please try again
ECHO.
goto start
:hello
ECHO HELLO
goto end
:bye
ECHO BYE
goto end
:test
ECHO TEST
goto end
:end

If you wanted to hide all your directories from users you can use:

SET DIRCMD=0

This will prevent anyone from seeing the directories; however, they still can be accessed. To allow the directories to be visible again, type:

SET DIRCMD=

6. Basic Commands

ECHO

Turns the command-echoing feature on or off, or displays a message.

echo [on | off] [message]

Parameters
on | off Specifies whether to turn the command-echoing feature on or off. To display the current echo setting, use the echo command without a parameter.
message Specifies text you want Windows 2000 to display on the screen.

This example shows a batch program that includes a three-line message preceded and followed by a blank line:

echo off
echo.
echo This is a sample batch program
echo Oh Dear said the Borg
echo We've assimilated Pooh.
echo.

If you want to turn echo off and you do not want to echo the echo command itself, include an at sign (@) before the command, as follows: @echo off

To echo a blank line on the screen, you can type echo and then a period (echo.). There must be no intervening space.

You can use the if and echo commands on the same command line, as follows: if exist *.log echo The log file has arrived.

CALL
Calls one batch program from another without stopping the parent batch program. The call command accepts labels as the target of the call. Call has no effect at the command-line when used outside of a script or batch file.

call [drive:][path] filename [batch-parameters]
call :label [arguments]

Parameters
[drive:][path] filename Example: CALL F:\scripts\batchfile.bat
Specifies the location and name of the batch program you want to call. The filename parameter must have a .bat or .cmd extension.

batch-parameters Specifies any command-line information required by the batch program. See below under the arguments parameter for extensions to batch-parameters.

:label Specifies the label (a specified part in the program) to which you want the batch program control to jump. Using the call command with this parameter creates a new batch file context and passes control to the statement after the specified label. The first time the end of the batch file is encountered (after jumping to the label), control returns to the statement after the CALL statement. The second time the end of the batch file is encountered, the batch script is exited.

/? Displays help at the command prompt

GOTO

Directs Windows 2000 to a line in a batch program marked by a label you specify. The goto command directs Windows 2000 within a batch program to a line identified by a label. When Windows 2000 finds the label, it processes the commands beginning on the next line.

goto label

Parameter label

Specifies the line in a batch program to which Windows 2000 should go. If command extensions are enabled (the default setting in Windows 2000), goto changes as follows: Using the goto command with a target label of :EOF transfers control to the end of the current batch script file, exiting the batch script file without defining a label.

Valid values for label
The label parameter can include spaces but cannot include other separators, such as semicolons or equal signs. When using goto with the EOF label, you must insert a colon before the label, for example: goto :EOF

Goto uses the first eight characters of each label
The goto command uses only the first eight characters of a label. Therefore, the labels ":hithere01" and ":hithere02" are both equivalent to ":hithere0."

Matching the label parameter with the label in the batch program
The label value you specify on the goto command line must match a label in the batch program. The label within the batch program must begin with a colon.If your batch program does not contain the label that you specify, the batch program stops and Windows 2000 displays the following message: Label not found

Windows 2000 recognizes a batch program line beginning with a colon (:) as a label and does not process it as a command. If a line begins with a colon, Windows 2000 ignores any commands on that line.

Example:

The following batch program formats a disk in drive A as a system disk. If the operation is successful, the goto command directs Windows 2000 to a label named "end."

echo off
format a: /s
if not errorlevel 1 goto end
echo An error occurred during formatting.
:end
echo End of batch program

FOR

Runs a specified command for each file in a set of files. You can use the for command within a batch program or directly from the command prompt.

To use for in a batch program, use the following syntax:
for %%variable in (set) do command [command-parameters]

To use for from the command prompt, use the following syntax:
for %variable in (set) do command [command-parameters]

Parameters
%%variable or %variable

Represents a replaceable parameter. The for command replaces %%variable (or %variable) with each text string in the specified set until the command (specified in the command-parameters) processes all of the files. Use %%variable to carry out the for command within a batch program. Use %variable to carry out for from the command prompt. Variable names are case sensitive.

(set)
Specifies one or more files or text strings that you want to process with the specified command. The parentheses are required.

command
Specifies the command that you want to carry out on each file included in the specified set.

command-parameters
Specifies any parameters or switches that you want to use with the specified command (if the specified command uses any parameters or switches).

If command extensions are enabled (the default setting in Windows 2000), additional forms of the for command are supported.

If command extensions are enabled, the following additional forms of the for command are supported:

directories only

for /D [%% | %]variable in (set) do command [command-parameters]

If set contains wildcards (* and ?), specifies to match against directory names instead of file names.

Recursive
for /R [[drive :]path] [%% | %]variable in (set) do command [command-parameters]
Walks the directory tree rooted at [drive:]path, executing the for statement in each directory of the tree. If no directory is specified after /R then the current directory is assumed. If set is just a single period (.) character then it will only enumerate the directory tree.

Iterative
for /L [%% | %]variable in (start,step,end) do command [command-parameters]
The set is a sequence of numbers from start to end, by step amount. So (1,1,5) would generate the sequence 1 2 3 4 5 and (5,-1,1) would generate the sequence (5 4 3 2 1).

File parsing
for /F ["options"] [%% | %]variable in (filenameset) do command [command-parameters]
for /F ["options"] [%% | %]variable in ("literal string") do command [command-parameters]
for /F ["options"] [%% | %]variable in ('command') do command [command-parameters]
or, if usebackq option present:
for /F ["options"] [%% | %]variable in (filenameset) do command [command-parameters]
for /F ["options"] [%% | %]variable in ('literal string') do command [command-parameters]
for /F ["options"] [%% | %]variable in (`command`) do command [command-parameters]

The filenameset parameter specifies one or more file names. Each file is opened, read and processed before going on to the next file in filenameset.

Processing consists of reading in the file, breaking it up into individual lines of text and then parsing each line into zero or more tokens. The body of the for loop is then called with the variable value(s) set to the found token string(s). By default, /F passes the first blank separated token from each line of each file.

Blank lines are skipped. You can override the default parsing behavior by specifying the optional "options" parameter. This is a quoted string which contains one or more keywords to specify different parsing options. The keywords are:

eol=c - specifies an end of line comment character (just one character)

skip=n - specifies the number of lines to skip at the beginning of the file.

delims=xxx - specifies a delimiter set. This replaces the default delimiter set of space and tab.

tokens=x,y,m-n - specifies which tokens from each line are to be passed to the for body for each iteration. This will cause additional variable names to be allocated. The m-n form is a range, specifying the mth through the nth tokens. If the last character in the tokens= string is an asterisk, then an additional variable is allocated and receives the remaining text on the line after the last token parsed.

usebackq - specifies that a back quoted string is executed as a command, a single quoted string is a literal string command, and you can use double quotes to quote file names in filenameset.

IF

Performs conditional processing in batch programs. If the condition specified in an if command is true, Windows 2000 carries out the command that follows the condition. If the condition is false, Windows 2000 ignores the command in the if clause, and executes any command in the else clause, if one has been specified.

 if [not] errorlevel number command [else expression]
 if [not] string1==string2 command [else expression]
 if [not] exist filename command [else expression]

With command extensions enabled:

 if [/i] string1 compare-op string2 command [else expression]
 if cmdextversion number command [else expression]
 if defined variable command [else expression]

Parameters

not
Specifies that Windows 2000 should carry out the command only if the condition is false.

errorlevel number
Specifies a true condition only if the previous program run by Cmd.exe returned an exit code equal to or greater than number.

command
Specifies the command that Windows 2000 should carry out if the preceding condition is met.

string1==string2
Specifies a true condition only if string1 and string2 are the same. These values can be literal strings or batch variables (%1, for example). Literal strings do not need quotation marks.

exist filename
Specifies a true condition if filename exists.

compare-op
one of the following three-letter comparison operators:

EQU
equal to

NEQ
not equal to

LSS
less than

LEQ
less than or equal to

GTR
greater than

GEQ
greater than or equal to

/i
The /i switch, when specified, forces string comparisons to ignore case. The /i switch can also be used on the string1==string2 form of if. These comparisons are generic, in that if both string1 and string2 are both comprised of all numeric digits, then the strings are converted to numbers and a numeric comparison is performed.

cmdextversion number
The cmdextversion conditional works just like errorlevel, except it is comparing against an internal version number associated with the Command Extensions feature of Cmd.exe. The first version is 1. It will be incremented by one when significant enhancements are added to the command extensions. The cmdextversion conditional is never true when command cxtensions are disabled.

defined variable
The defined conditional works just like exist except it takes an environment variable name and returns true if the environment variable is defined. Three variables are added with this conditional: %errorlevel%, %cmdcmdline%, and %cmdextversion%.

%errorlevel% expands into a string representation of the current value of errorlevel, provided that there is not already an environment variable with the name ERRORLEVEL, in which case you will get its value instead. After running a program, the following illustrates errorlevel use:

 goto answer%erorlevel%
 :answer0
 echo Program had return code 0
 :answer1
 echo Program had return code 1

You can also use the comparison operators listed above at compare-op:

 if %errorlevel% LEQ 1 goto okay

%cmdcmdline% expands into the original command line passed to Cmd.exe prior to any processing by Cmd.exe, provided that there is not already an environment variable with the name cmdcmdline, in which case you will get its value instead.

%cmdextversion% expands into the a string representation of the current value of cmdextversion, provided that there is not already an environment variable with the name CMDEXTVERSION, in which case you will get its value instead.

expression
In an else clause, an expression consists of a Windows 2000 command and any parameters to be passed to the command.

Examples

Using if to verify the presence of a file
The following message appears if Windows 2000 cannot find the file Product.dat: if not exist product.dat echo Can't find data file

Using if to post a message when an error occurs
The following example displays an error message if an error occurs during formatting of the disk in drive A:

echo off
format a: /s
if not errorlevel 1 goto end
echo An error occurred during formatting.
:end
echo End of batch program

If no error occurs, the error message is skipped.

Using if to verify the presence of a directory
The following example tests for the existence of a directory. The if command cannot be used to test directly for a directory, but the null (NUL) device does exist in every directory. Therefore, you can test for the null device to determine whether a directory exists.

 if exist c:mydir\nul goto process

Using the else clause
The else clause must occur on the same line as the command after the if. For example:

 IF EXIST filename. (

 del filename.

) ELSE (

 echo filename. missing.

)

The following does not work, because the del command must be terminated by a newline:
 IF EXIST filename. del filename. ELSE echo filename. missing

The following does not work, because the else command must be on the same line as the end of the if command:
 IF EXIST filename. del filename.
 ELSE echo filename. missing

The following form of the original statement works, if you want to format it all on a single line:
 IF EXIST filename. (del filename.) ELSE echo filename. Missing

PAUSE

Suspends processing of a batch program and displays a message prompting the user to press any key to continue.

Prompting the user to continue the program
Windows 2000 displays the following message in response to the pause command:

Press any key to continue . . .

Dividing a batch file into sections
If you press CTRL+C to stop a batch program, Windows 2000 displays the following message: Terminate batch job (Y/N)?
If you press Y (for yes) in response to this message, the batch program ends and control returns to the operating system. Therefore, you can insert the pause command before a section of the batch file you may not want to process. While pause suspends processing of the batch program, you can press CTRL+C and then Y to stop the batch program

Examples

Suppose you want a batch program to prompt the user to change disks in one of the drives. To do this, you might create the following file:

@echo off
:begin
copy a:*.*
echo Please put a new disk into drive A
pause
goto begin

In this example, all the files on the disk in drive A are copied to the current directory. After the displayed comment prompts you to place another disk in drive A, the pause command suspends processing so that you can change disks and then press any key to resume processing. This particular batch program runs in an endless loop. The goto BEGIN command sends the command interpreter to the begin label of the batch file. To stop this batch program, press CTRL+C and then Y.

REM

Enables you to include comments (remarks) in a batch file or in your configuration files. This is useful for documentation, and explaining what each section of your batch file does. (Trust me, you'll forget what your programming logic was a year from now.)

rem [comment]

Parameter comment
Specifies any string of characters you want to include as a comment

Using the echo command to display comments
The rem command does not display comments on the screen. You must use the echo on command in your batch or Config.nt file to display comments on the screen.

Restrictions on batch file comments
You cannot use a redirection character "(" or ")" or pipe (|) in a batch file comment.

Using rem to add vertical spacing
Although you can use rem without a comment to add vertical spacing to a batch file, you can also use blank lines. Windows 2000 ignores the blank lines when processing the batch program.

Examples
The following example shows a batch file that uses remarks for both explanations and vertical spacing:

@echo off
rem This batch program formats and checks new disks.
rem It is named Checknew.bat.
rem
echo Insert new disk in drive B.
pause
format b: /v
chkdsk b:

Suppose you want to include in your Config.nt file an explanatory comment before the prompt command. To do this, add the following lines to Config.nt:

rem Set prompt to indicate current directory
prompt pg

SHIFT

Changes the position of replaceable parameters in a batch file.

shift

When command extensions are enabled (the default setting in Windows 2000), the shift command supports the /n switch, which tells the command to start shifting at the nth argument, where n can be a value from zero to eight.

For example, SHIFT /2 would shift %3 to %2, %4 to %3, and so on, and leave %0 and %1 unaffected

How the shift command works
The shift command changes the values of the replaceable parameters %0 through %9, by copying each parameter into the previous one. In other words, the value of %1 is copied to %0, the value of %2 is copied to %1, and so on. This is useful for writing a batch file that performs the same operation on any number of parameters.

Working with more than 10 command-line parameters
You can also use the shift command to create a batch file that can accept more than 10 parameters. If you specify more than 10 parameters on the command line, those that appear after the tenth (%9) will be shifted one at a time into %9.

Shifting parameters back
There is no backward shift command. After you carry out the shift command, you cannot recover the first parameter (%0) that existed before the shift.

Example
The following batch file, testcopy.bat, shows how to use the shift command with any number of parameters. It copies a list of files to a specific directory. The parameters are the directory name followed by any number of file names.

@echo off
rem TESTCOPY.BAT copies any number of files
rem to a directory.
rem The command uses the following syntax:
rem testcopy dir file1 file2 ...
set todir=%1
:getfile
shift
if "%1"=="" goto end
copy %1 %todir%
goto getfile
:end
set todir=
echo copy completed

7. Excersises

1. Test all scripts presented in this documents.

2. Make script ‘sequence.bat’ which show the numbers in following order: 5,4,3,2,1 and 75,50,25,0 (use the FOR command).

3. Make script ‘lab.bat’ which show the „Laboratory” word five times.

4. Make script which show following variables: username of current Windows user, driveletter and the path of this user, script also should show the processor creator.

 5. Make script ‘old.bat’ which show list of all files with .txt extender from all folders on drive C. After, script should list all files contains Readme at the filename begin. Please sort them and the result write into old.txt file. Next call script ‘lab.bat’ from pt.3. Show current date without new date prompt and add them to the ‘old.txt’ file. At the end show the sentence „finding finished“.

6. Create file ‘string.txt’ with random content. Make script ‘find.bat’ which will find the string from ‘string.txt’ which is specified as first variable of called script. Result should be written to the file specified by name of second variable (e.g result.txt). As a results take a parameters which precise a line numbers and word positions in these lines for each string found in parsed source file.

7. Propose your own two console scripts based on all experienced Windows Shell commands.

As an additional help look at http://www.computerhope.com/msdos.htm

